
R for Data Analysis

Trevor French

11/13/22

ii

Table of contents

I Introduction 1
Prerequisites . 3
Structure of the Book . 3
License . 4
About Me . 4

1 What is R? 5
1.1 History . 5
1.2 Resources . 5

2 What is Data Analysis? 7
2.1 The Process of Data Analysis . 7
2.2 Resources . 8

3 Setup 9
3.1 Install R . 9
3.2 Install R Studio . 11
3.3 Alternatives . 13

3.3.1 Posit Cloud . 13
3.3.2 Replit . 13
3.3.3 Kaggle . 14

3.4 Resources . 14

II Part I: Fundamentals 15

4 Getting Familiar with RStudio 19
4.1 Customization . 19
4.2 Source Pane . 21
4.3 Console . 24
4.4 Environment . 25
4.5 Files . 26
4.6 Resources . 27

iii

iv TABLE OF CONTENTS

5 Programming Basics 29
5.1 Executing Code . 29

5.1.1 Console . 29
5.1.2 Script . 30

5.2 Comments . 32
5.3 Variables . 33
5.4 Operators . 33

5.4.1 Arithmetic Operators . 35
5.4.2 Comparison Operators . 35
5.4.3 Logical Operators . 36
5.4.4 Assignment Operators . 37
5.4.5 Miscellaneous Operators 39

5.5 Functions . 40
5.6 Loops . 41

5.6.1 While Loops . 41
5.6.2 For Loops . 42

5.7 Conditionals . 42
5.8 R packages . 43
5.9 Resources . 44

6 Data Types 45
6.1 Numeric . 45

6.1.1 Double . 45
6.1.2 Integer . 46

6.2 Complex . 46
6.3 Character . 47
6.4 Logical . 47
6.5 Raw . 47
6.6 Resources . 48

7 Data Structure 49
7.1 Vectors . 49
7.2 Lists . 50
7.3 Matrices . 50
7.4 Factors . 51
7.5 Data Frames . 51
7.6 Arrays . 51
7.7 Resources . 52

Exercises 53
Questions . 53
Answers . 56

TABLE OF CONTENTS v

III Part II: Data Acquisition 59

8 Included Datasets 63
8.1 View Catalog . 63
8.2 Working with Included Data . 64
8.3 Common Datasets . 66

8.3.1 mtcars . 66
8.3.2 faithful . 67
8.3.3 ChickWeight . 67
8.3.4 Titanic . 68

8.4 Resources . 68

9 Import from Spreadsheets 69
9.1 Import from .csv Files . 69
9.2 Import from .xlsx Files . 70
9.3 Import and Combine Multiple Files 70
9.4 Resources . 70

10 Working with APIs 71
10.1 Install Packages . 71
10.2 Load packages from the library 71
10.3 Make Request . 71
10.4 Parse & Explore Data . 72
10.5 Adding Parameters to Requests 73
10.6 Adding Headers to Requests . 73
10.7 Resources . 73

10.7.1 Helpful APIs . 73

Exercises 75
Questions . 75
Answers . 76

IV Part III: Data Preparation 79

11 Data Cleaning 83
11.1 Renaming Variables . 83
11.2 Splitting Text . 85
11.3 Replace Values . 86
11.4 Drop Columns . 86
11.5 Drop Rows . 88
11.6 Resources . 88

12 Handling Missing Data 89
12.1 Handling NA/Blank Values . 89
12.2 Constant Value Imputation . 91
12.3 Central Tendency Imputation . 92

vi TABLE OF CONTENTS

12.4 Multiple Imputation . 93
12.5 Resources . 95

13 Outliers 97
13.1 Finding Outliers Visually . 97

13.1.1 Scatter Plot . 97
13.1.2 Box Plot . 99
13.1.3 Histogram . 100
13.1.4 Density Plot . 101

13.2 Finding Outliers Statistically . 103
13.2.1 Standard Deviation . 103

13.3 Removing Outliers . 103
13.4 Resources . 104

14 Organizing Data 105
14.1 Sort, Order, and Rank . 105
14.2 Filtering . 106
14.3 Grouping . 107
14.4 Resources . 108

Exercises 109
Questions . 109
Answers . 111

V Part IV: Developing Insights 115

15 Summary Statistics 119
15.1 Quantitative Data . 119
15.2 Qualitative Data . 120
15.3 Resources . 121

16 Regression 123
16.1 Linear Regression . 123
16.2 Multiple Regression . 125
16.3 Logistic Regression . 127
16.4 Resources . 127

17 Plotting 129
17.1 Plotting your Regression Model 129
17.2 Plots Available in Base R . 135

17.2.1 Box Plot . 135
17.2.2 Plot Matrix . 138
17.2.3 Pie Chart . 139
17.2.4 Bar Plot . 140
17.2.5 Histogram . 141
17.2.6 Density Plot . 142

TABLE OF CONTENTS vii

17.2.7 Dot Chart . 143
17.3 Resources . 146

Exercises 147
Questions . 147
Answers . 148

VI Part V: Reporting 151

18 Spreadsheets 155
18.1 Export . 155

18.1.1 Export .csv Files . 155
18.1.2 Export .xlsx Files . 158

18.2 Formatting . 158
18.3 Formulas . 166
18.4 Resources . 169

19 R Markdown 171
19.1 Format Options . 171
19.2 HTML Document Example . 178
19.3 R Notebook . 183
19.4 Resources . 187

20 R Shiny 189
20.1 Quickstart . 189
20.2 Basic Components of a Shiny Application 194

20.2.1 Libraries . 194
20.2.2 UI . 194
20.2.3 Server . 196
20.2.4 Putting it Together . 196

20.3 Deploying Application . 197
20.3.1 ShinyApps.io . 197
20.3.2 Configuring Account . 199

20.4 Resources . 203

Exercises 205
Questions . 205
Answers . 205

References 207

viii TABLE OF CONTENTS

Part I

Introduction

1

Prerequisites 3

“There is synthesis when, in combining therein judgments that are
made known to us from simpler relations, one deduces judgments
from them relative to more complicated relations. There is analysis
when from a complicated truth one deduces more simple truths.”
-André-Marie Ampère (Hofmann 1996)

Everyone is a data analyst. The purpose of this book is to inspire and enable
anyone who reads it to reconsider the methods they currently employ to analyse
data. This is not to suggest that the methodologies outlined will be useful or
sufficient for everyone who reads it. Some analyses can be performed quickly
without the need for additional computation while others will require advanced
analytics techniques not outlined in this book; however, the aspiration is that
all will be equipped with novel tools and ideas for approaching data analysis.

Prerequisites
No prior knowledge is required to begin this book. The content will start at
the very beginning by showing you how to set up your R environment and the
basics of programming in R. By the end of the book, you will be able to perform
intermediate analytics techniques such as linear regression and automatic report
generation.

You will need an environment which you use to run your code. It is recom-
mended that you download R and R Studio locally for this requirement. This
book will walk you through how to do that as well as offer alternatives if that
is not an option for you.

Structure of the Book
• Part I (Fundamentals) will introduce you to the basics of programming

in the context of R.
• Part II (Data Acquisition) will teach you how to create, import, and

access data.
• Part III (Data Preparation) will show you how to begin preparing

your data for analysis.
• Part IV (Developing Insights) goes through the process of searching

for and extracting insights from your data.
• Part V (Reporting) demonstrates how to wrap your analysis up by

developing and automating reports.

Each part will contain several chapters which cover specific ideas related to the
overarching topic. At the end of each of these chapters you will find additional
resources for you to use to dive deeper into the ideas. Each part will be concluded
with practical exercises for you to test your skills.

While sections of this book could be used to supplement formal education pro-

4

grams, it was initially designed to be used for independent study.

License
This work is free to use, and is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

About Me
I have an M.S. in Data Analytics, a B.S. in Business Analytics, and currently
work in industry as an Analytics Manager for a software company. I began
my journey into analytics by working as a Data Analyst for the university I
was attending. This role allowed me to automate processes, build dashboards,
deliver reports to executive stakeholders, and provide insight on how operations
might be improved. I performed this role until I was promoted to lead the
team. Later, I worked for a major CPG company driving pricing and promotion
strategy for a large piece of the business.

Despite my education, most of my basic analytics knowledge was hard-won
through self-study. I created this resource to be what I wish I had when I
started my journey into the analytics domain. Additionally, I don’t believe that
one must be a domain expert to be effective at analyzing data. In fact, I think
most people can quickly learn the skills necessary to be very effective at it.

Physical copies of this book are not currently available; however, you can down-
load a pdf in the top left corner of this site. Feel free to contribute by reporting a
typo or leaving a pull request at https://github.com/TrevorFrench/R-for-Data-
Analysis.

https://github.com/TrevorFrench/R-for-Data-Analysis
https://github.com/TrevorFrench/R-for-Data-Analysis

Chapter 1

What is R?

R was a programming language that was designed specifically for the
needs of statistics and data analysis. -Hadley Wickham (Hermans
2021)

R is a statistical programming language used commonly for data analysis across
a wide array of disciplines and industries. It’s often preferred over similar lan-
guages for it’s robust support of statistical analysis, the ease in which one is able
to create beautiful graphics, and its open source nature among other reasons.

1.1 History
R was built by Ross Ihaka and Robert Gentleman at the University of Auckland
and was first released in 1993.

Robert Gentleman and Ross Ihaka “both had an interest in statistical comput-
ing and saw a common need for a better software environment in [their] Macin-
tosh teaching laboratory. [They] saw no suitable commercial environment and
[they] began to experiment to see what might be involved in developing one
[them]selves.” (Ihaka 1998)

While R was officially first released in 1993, it wasn’t until 1995 that Ross Ihaka
and Robert Gentlemann were convinced by Martin Mächler to release the source
code freely (Ihaka 1998).

1.2 Resources
• You can learn more about R here: https://www.r-project.org/
• Read Ross Ihaka’s account of R’s origination: https://www.stat.auckland.

ac.nz/~ihaka/downloads/Interface98.pdf

5

https://www.r-project.org/
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf

6 CHAPTER 1. WHAT IS R?

• “What is R?”” by Microsoft: https://mran.microsoft.com/documents/
what-is-r

• R manuals by the R Development Core Team: https://cran.r-project.org/
manuals.html

• R-bloggers: https://www.r-bloggers.com/
• R User Groups: https://www.meetup.com/pro/r-user-groups/
• R Studio Community: https://community.rstudio.com/
• The R Journal: https://journal.r-project.org/

https://mran.microsoft.com/documents/what-is-r
https://mran.microsoft.com/documents/what-is-r
https://cran.r-project.org/manuals.html
https://cran.r-project.org/manuals.html
https://www.r-bloggers.com/
https://www.meetup.com/pro/r-user-groups/
https://community.rstudio.com/
https://journal.r-project.org/

Chapter 2

What is Data Analysis?

I mean my definition is data science is like data analysis by program-
ming. Which of course begs the question of what data analysis is,
and so I think of data analysis as really any activity where the input
is data and the output is understanding or knowledge or insights.
So I think of that pretty broadly. And then to do data science
you’re not doing it by pointing and clicking. You’re doing it by
writing some code in a programming language. -Hadley Wickham
(Eremenko 2020)

Data analysis at its most simple form is the process of searching for meaning in
data with the ultimate goal to draw insight from that meaning.

2.1 The Process of Data Analysis
The process of data analysis can be generally described in five steps:

1. Gathering Requirements - Before one embarks on an analysis, it’s
important to make sure the requirements are understood. Requirements
include the questions your stakeholders are hoping to answer as well as
the technical requirements of how you are going to perform your analysis.

2. Data Acquisition - As you might imagine, you must acquire your data
before conducting an analysis. This may be done through methods such as
manual creation of datasets, importing pre-constructed data, or leveraging
APIs.

3. Data Preparation - Most data will not be received in the precise format
you need to begin your analysis. The process of data preparation involves
structuring and adding features to your data.

7

8 CHAPTER 2. WHAT IS DATA ANALYSIS?

4. Developing Insights - Once your data is prepared, you can begin to
make sense of it and develop insights about its meaning.

5. Reporting - Finally, it’s important to report on your data in such a way
that the information can be digested by the people who need to see it
when they need to see it.

Other sources may include additional steps such as “acting on the analysis”.
While this is a critical step for organizations to capture the full value of their
data, I would argue that it occurs outside of the analysis process.

This book will focus on the technical skills required to conduct an analysis.
Because of this, we will be covering steps two through five and omitting step
one.

2.2 Resources
• “Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing

and Presenting Data” by EMC Education Services: https://onlinelibrary.
wiley.com/doi/book/10.1002/9781119183686

• “Managing the Analytics Life Cycle for Decisions at Scale” by SAS:
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/
manage-analytical-life-cycle-continuous-innovation-106179.pdf

https://onlinelibrary.wiley.com/doi/book/10.1002/9781119183686
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119183686
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf
https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/manage-analytical-life-cycle-continuous-innovation-106179.pdf

Chapter 3

Setup

This chapter will walk you through downloading the R programming language
as well as R Studio, which is a popular tool for interacting with the R ecosystem.
Additionally, there are alternatives to R Studio listed at the end of the chapter.
However, R Studio is the recommended environment for completing this book.

3.1 Install R
Before you do anything, you’ll need to download R. This download will allow
your computer to interpret the R code you write later on.

1. Download R From R: The R Project for Statistical Computing

2. Select “download R”

3. Choose any link but preferably the one closest to your physical location

9

https://www.r-project.org/

10 CHAPTER 3. SETUP

4. Choose your operating system

5. Press “Install R for the first time”

6. Press “download”

3.2. INSTALL R STUDIO 11

7. Open installer

8. Follow the prompts and leave all options set as their default values

3.2 Install R Studio
After you install R, you’ll need an environment to write and run your code in.
Most people use a program called “RStudio” for this. To download RStudio
follow the steps listed below:

1. Navigate to the R Studio download site: Download the RStudio IDE

https://www.rstudio.com/products/rstudio/download/

12 CHAPTER 3. SETUP

2. Press the “download” button under RStudio Desktop

3. Choose the download option for your operating system

4. Open the installer and accept all defaults

3.3. ALTERNATIVES 13

3.3 Alternatives

3.3.1 Posit Cloud

Posit Cloud offers users a way to replicate the full RStudio experience without
having to download or set anything up on your personal computer. You can
sign up for a free account here:

3.3.2 Replit

Replit allows users to code in 50+ languages in the browser. While you won’t
be able to follow along with the RStudio specific examples, you will be able to
run R code. You can sign up for a free account here:

14 CHAPTER 3. SETUP

3.3.3 Kaggle
Kaggle is one of the most popular sites for data analysts to compete in data
competitions, find data, and discuss data topics. They also have a feature that
allows you to write and run R (and Python) code. You can sign up for a free
account here:

3.4 Resources
• “R Installation and Administration” by the R Core Team: https://cran.r-

project.org/doc/manuals/r-release/R-admin.html

https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html

Part II

Part I: Fundamentals

15

17

This section will introduce you to the basics of programming in the context of R.
There are four chapters in this book. Each chapter has a brief description listed
below. After you have finished reading through each of them, you will have
the opportunity to attempt practical exercises to reinforce your newly-gained
knowledge.

Note

Users with a moderate amount of experience in R or another programming
language should feel free to either skip, skim, or leverage this chapter as
a reference guide.

• Getting Familiar with RStudio- There are four sections in RStudio.
These sections are often referred to as “panes”. This chapter will introduce
you to the “source”, “console”, “environment”, and “files” panes. Addi-
tionally, you will learn about the different ways you can customize your
version of RStudio such as changing the color scheme.

• Programming Basics- While the R language certainly has its unique
advantages, it still leverages principles found in many other programming
languages such as functions, comments, and loops. Learn how to apply
these and other principles in R.

• Data Types- Data is stored differently depending on what it represents
when programming. For example, a number and a letter are stored as
different data types. Learn about the five basic data types in R and how
to use them.

• Data Structures- In computer science, a data structure refers to the
method which one uses to organize their data. Six basic data structures
are commonly used in R. Learn about each of them in this chapter.

18

Chapter 4

Getting Familiar with
RStudio

To begin, we are going to walk through customizing your version of RStudio to
make it the most comfortable environment for you personally. Following this, we
are going to walk through the four panes of RStudio. At a glance, RStudio may
seem overwhelming; however, by the end of this chapter you will have learned
the essentials needed to embark on your data analysis journey.

4.1 Customization

You are able to customize how your version of RStudio looks by following these
steps:

1. Open RStudio and choose ‘tools’ from the toolbar

2. Choose ‘Global Options’

19

20 CHAPTER 4. GETTING FAMILIAR WITH RSTUDIO

3. Choose ‘Appearance’ and select your favorite theme from the ‘Editor
Theme’ section

4.2. SOURCE PANE 21

4. Press ‘Apply’

There are other customization options avaialable as well. Feel free to explore
the “Global Options” section to make your version of RStudio your own.

4.2 Source Pane
The source pane is the top left pane in RStudio. This is where you will write
and edit your code.

22 CHAPTER 4. GETTING FAMILIAR WITH RSTUDIO

If you don’t see the source pane, you may need to create a new R script by
pressing “Ctrl + Shift + N” (“Cmd + Shift + N” on Mac) or by selecting “R
Script” from the “New File” dropdown in the top left corner.

Each element of the source pane is outlined below.

4.2. SOURCE PANE 23

a. Show in New Window- This allows you to pop the source pane into a
new window by itself.

b. Save Current Document- This saves the file contained in the tab you
currently have active.

c. Source on Save- Automatically sources your file every time you hit save.
“Sourcing” is similar to “Running” in the sense that both will execute your
code; however, sourcing will execute your saved file rather than copying
lines of code into the console.

d. Find/Replace- this feature allows you to find and replace specified text,
similar to find and replace features in other tools such as Excel.

e. Code Tools- This brings up a menu of options which help you to code
more efficiently. Some of these tools include formatting your code and
help with function definitions.

f. Compile Report- This allows you to compile a report directly from an R
script without needing to use additional frameworks such as R Markdown.

g. Run Current Selection- This allows you to highlight a portion of your
code and run only that portion.

h. Re-run Previous Code Region- This option will execute the last sec-
tion of code that you ran.

i. Go to Previous/Next Section/Chunk- These up and down arrows
allow you to navigate through sections of your code without needing to
scroll.

j. Source Contents- This option will save your active document if it isn’t
already saved and then source the file.

k. Outline- Pressing this option will pop open an outline of your current
file.

l. Adjust Frame Size- These two options will adjust the size of the source
pane inside of R Studio.

24 CHAPTER 4. GETTING FAMILIAR WITH RSTUDIO

m. Syntax Highlighting- This allows you to adjust the syntax highlighting
of your active document to match the highlighting of other file types.

n. “Jump To” Menu- This menu allows you to quickly jump to different
sections of your code.

o. Cursor Position- This displays your current cursor position by row and
column.

p. Row Numbers- Display the row number for each line of your code on
the left side of the document.

q. Back/Forward- These arrows are navigation tools that will allow you to
redo/undo the following actions: opening a document (or switching tabs),
going to a function definition, jumping to a line, and jumping to a function
using the function menu (Paulson 2022).

r. Tab- This is a tab in the traditional sense, meaning you are able to have
a collection of documents open displayed as tabs. These tabs will have
the title of your document and often an icon of some sort to demonstrate
the file type.

4.3 Console

The console pane is the bottom left pane in RStudio. This pane has three tabs:
“Console”, “Terminal”, and “Background Jobs”.

• The “Console” tab is where you will be able to run R code directly without
writing a script (this will be covered in the next chapter).

• The “Terminal” tab is the same terminal you have on your computer. This
can be adjusted in the global options.

• The “Background Jobs” tab is where you can start and manage processes
that need to run behind the scenes.

4.4. ENVIRONMENT 25

4.4 Environment

The environment pane is the top right pane in RStudio. This is where you will
manage all things related to your development environment. This pane has four
tabs: “Environment”, “History”, “Connections”, and “Tutorial”.

• The “Environment” tab will display all information relevant to your cur-
rent environment. This includes data, variables, and functions. This is
also the place where you can view and manage your memory usage as well
as your workspace.

• The “History” tab allows you to view the history of your executed code.
You can search through these commands and even select and re-execute
them.

• The “Connections” tab is where you can create and manage connections
to databases.

• The “Tutorial” tab delivers tutorials powered by the “learnr” package.

26 CHAPTER 4. GETTING FAMILIAR WITH RSTUDIO

4.5 Files
The files pane is the bottom right pane in RStudio. This pane has six tabs:
“Files”, “Plots”, “Packages”, “Help”, “Viewer”, and “Presentation”.

• The “Files” tab is a file explorer of sorts. You can view the contents of a
directory, navigate to new directories, and manage files here.

• The “Plots” tab is where the output of your generated plots will show up.
You can also export your plots from this tab.

• The “Packages” tab allows you to view all available packages within your
environment. From this tab, you can read more about each package as
well as update and access packages.

• The “Help” tab allows you to search for information about functions to
include examples, descriptions, and available parameters.

• The “Viewer” tab is where certain types of content such as quarto docu-
ments will be displayed when rendered.

• The “Presentation” tab is similar to the “Viewer” tab except the content
type will be presentations.

4.6. RESOURCES 27

4.6 Resources
• “Editing and Executing Code in the RStudio IDE” from the R Studio Sup-

port team: https://support.rstudio.com/hc/en-us/articles/200484448-
Editing-and-Executing-Code

• “Code Folding and Sections in the RStudio IDE” from the R Studio Sup-
port team: https://support.rstudio.com/hc/en-us/articles/200484568-
Code-Folding-and-Sections-in-the-RStudio-IDE

• “Keyboard Shortcuts in the RStudio IDE” from the R Studio Sup-
port team: https://support.rstudio.com/hc/en-us/articles/200711853-
Keyboard-Shortcuts-in-the-RStudio-IDE

• “Navigating Code in the RStudio IDE” from the R Studio Support team:
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-
Code-in-the-RStudio-IDE

https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
https://support.rstudio.com/hc/en-us/articles/200484448-Editing-and-Executing-Code
https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200484568-Code-Folding-and-Sections-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-in-the-RStudio-IDE

28 CHAPTER 4. GETTING FAMILIAR WITH RSTUDIO

Chapter 5

Programming Basics

This chapter will walk you through executing code and writing scripts in R. You
will then build upon that knowledge by learning about comments, variables,
operators, functions, loops, conditionals, and libraries. While this chapter is
titled “Programming Basics”, the knowledge you will have learned by the end
of this chapter is enough for you to accomplish a huge variety of tasks.

5.1 Executing Code

When working in most programming languages, you will generally have the
option to execute code one of two ways:

• in the console
• in a script

5.1.1 Console

The first way to run code is directly in the console. If you’re working in RStudio,
you will access the console through the “console” pane.

Alternatively, if you downloaded R to your personal computer, you will likely be
able to search your machine for an app named “RGui” and access the console
this way as well.

29

30 CHAPTER 5. PROGRAMMING BASICS

In the following example, the text “print(3+2)”” is typed into the console. The
user then presses enter and sees the result: “[1] 5”.

print(3+2)

[1] 5

You may be wondering what “[1]” represents. This is simply a line number in
the console and can be ignored for most practical purposes. Additionally, most
of the examples in this book will be structured in this way: formatted code
immediately followed by the code output.

5.1.2 Script
You likely will be using scripts most of the time when working in R. A script
is just a file that allows you to type out longer sequences of code and execute
them all at once.

For those of you following along in RStudio, you can create a script by pressing
“Ctrl + Shift + N” on Windows or by selecting “R Script” from the “New File”
dropdown in the top left corner.

5.1. EXECUTING CODE 31

From here you can type the same command from before into the source pane.
Next, you’ll want to save your file by pressing “Ctrl + S” on Windows or by
selecting “Save” from the “File” dropdown in the top left corner. Now just give
your file a name and your file will automatically be saved as a “.R” file.

Finally, run your newly created R script by pressing the “source” button.

32 CHAPTER 5. PROGRAMMING BASICS

5.2 Comments
Comments are present in most (if not all) programming languages. They allow
the user to write text in their code that isn’t executed or read by computers.
Comments can serve many purposes such as notes, instructions, or formatting.

Comments are created in R by using the “#” symbol. Here’s an example:

This is a comment
print(3+2)

[1] 5

Some programming languages allow you a “bulk-comment” feature which allows
you to quickly comment out multiple consecutive lines of text. However, in R,

5.3. VARIABLES 33

there is no such option. Each line must begin with a “#” symbol, as such:

This is the first line of a comment
This is the second line of a comment
print(3+2)

[1] 5

Comments don’t have to start at the beginning of a line. You are able to start
comments anywhere on a line like in this example:

print(3+2) # This comment starts mid-line

[1] 5

5.3 Variables

Variables are used in programming to give values to a symbol. In the following
example we have a variable named “rate” which is equal to 15, a variable named
“hours” which is equal to 4, and a variable named “total_cost” which is equal
to rate * hours.

rate <- 15
hours <- 4
total_cost <- rate * hours
print(total_cost)

[1] 60

5.4 Operators

An operator is a symbol that allows you to perform an action or define some
sort of logic. The following image demonstrates the operators that are available
to you in R.

34 CHAPTER 5. PROGRAMMING BASICS

5.4. OPERATORS 35

5.4.1 Arithmetic Operators
Arithmetic operators allow users to perform basic mathematical operations. The
examples below demonstrate how these operators might be used. For those not
familiar, the modulus operator will return the remainder of a division operation
while integer (or Euclidean) division returns the result of a division operation
without the fractional component.

3 + 3

[1] 6

3 - 3

[1] 0

3 * 3

[1] 9

3 ^ 3

[1] 27

10 / 7

[1] 1.428571

10 %% 7

[1] 3

10 %/% 7

[1] 1

5.4.2 Comparison Operators
Comparison operators allow users to compare values. The examples below
demonstrate how these operators might be used.

3 == 3

[1] TRUE

36 CHAPTER 5. PROGRAMMING BASICS

3 != 3

[1] FALSE

3 > 3

[1] FALSE

3 < 3

[1] FALSE

3 >= 3

[1] TRUE

3 <= 3

[1] TRUE

5.4.3 Logical Operators
Logical operators allow users to express “AND”, “OR”, and “NOT”. The fol-
lowing examples demonstrate how these operators might be used in conjunction
with comparison operators as well as the difference between standard logical
operators and “vectorized” logical operators.

In this example, we will evaluate two vectors of the same length from left to
right. Each vector has seven observations (-3, -2, -1, 0, 1, 2, 3). Rather than
simply returning a single “TRUE” or “FALSE”, this will return seven “TRUE”
or “FALSE” values. In this case, the first element of each vector (“-3” and “-3”)
will be evaluated against their respective conditions and return “TRUE” only if
both conditions are met. This will then be repeated for each of the remaining
elements.

Vectorized "AND" operator
((-3:3) >= 0) & ((-3:3) <= 0)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE

This example will return a single “TRUE” only if both conditions are met,
otherwise “FALSE” will be returned.

Standard "AND" operator
(3 >= 0) && (-3 <= 0)

[1] TRUE

5.4. OPERATORS 37

This example is the same as the previous one with the exception that we have
negated the second condition with a “NOT” operator.

Standard "AND" operator with "NOT" operator
(3 >= 0) && !(-3 <= 0)

[1] FALSE

The following two examples are essentially the same as the first two except that
we are using “OR” operators rather than “AND” operators

Vectorized "OR" operator
((-3:3) >= 0) | ((-3:3) <= 0)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Standard "OR" operator
(3 >= 0) || (-3 <= 0)

[1] TRUE

5.4.4 Assignment Operators
Assignment operators allow users to assign values to something. For most users,
only “<-” or “->” will ever be used. These are called local assignment operators.
However, there is another type of operator called a global assignment operator
which is denoted by “«-” or “-»”.

Understanding the difference between local and global assignment operators in
R can be tricky to get your head around. Here’s an example which should clear
things up.

First, let’s create two variables named “global_var” and “local_var” and give
them the values “global” and “local”, respectively. Notice we are using the
standard assignment operator “<-” for both variables.

global_var <- 'global'
local_var <- 'local'

global_var

[1] "global"

local_var

[1] "local"

38 CHAPTER 5. PROGRAMMING BASICS

Next, let’s create a function to test out the global assignment operator (“«-”).
Inside this function, we will assign a new value to both of the variables we just
created; however, we will use the “<-” operator for the local_var and the “«-”
operator for the global_var so that we can observe the difference in behavior.

Note

Functions are covered directly after this section. If the concept of functions
is unfamiliar to you, feel free to jump ahead and come back later.

my_function <- function() {
global_var <<- 'na'
local_var <- 'na'
print(global_var)
print(local_var)

}

my_function()

[1] "na"
[1] "na"

This function performs how you would expect it to intuitively, right? The
interesting part comes next when we print out the values of these variables
again.

global_var

[1] "na"

local_var

[1] "local"

From this result, we can see the difference in behavior caused by the differing
assignment operators. When using the “<-” operator inside the function, it’s
scope is limited to just the function that it lives in. On the other hand, the “«-”
operator has the ability to edit the value of the variable outside of the function
as well.

You may now be wondering why both the local and the global assignment oper-
ators have two separate denotations. The following example demonstrates the
difference between the two.

5.4. OPERATORS 39

x <- 3
3 -> y

x

[1] 3

y

[1] 3

There is also a third assignment operator that can be used: “=”. You will
generally use the local assignment operator; however, you may notice that the
“=” operator is used within certain functions as you progress. You can find
more information about these three operators in the resources section.

5.4.5 Miscellaneous Operators
The “:” operator allows users to create a series of numbers in a sequence. This
was demonstrated in the logical operator section. The %in% operator checks if
an element exists in a vector. Both of these operators are demonstrated in the
following example.

3 %in% 1:3

[1] TRUE

Finally, the “%*%” operator allows users to perform matrix multiplication as is
demonstrated below. First, let’s create a 2x2 matrix and then let’s multiply it
by itself.

x <- matrix(
c(1,3,3,7)
, nrow = 2
, ncol = 2
, byrow = TRUE)

x %*% x

[,1] [,2]
[1,] 10 24
[2,] 24 58

40 CHAPTER 5. PROGRAMMING BASICS

5.5 Functions
Functions allow you to bundle a predefined set of operations into one command.
The syntax of functions in R is as follows.

Create a function called function_name
function_name <- function() {
print("Hello World!")

}

Call your newly created function
function_name()

[1] "Hello World!"

To go one step further, you can also add “arguments” to a function. Arguments
allow you to pass information into the function when it is called. Here’s an
example:

Create a function called add_numbers which will add
two specified numbers together and print the result
add_numbers <- function(x, y) {

print(x + y)
}

Call your newly created function twice with different inputs
add_numbers(2, 3)

[1] 5

add_numbers(50, 50)

[1] 100

Finally, you can return a value from a function as such:

Create a function called calculate_raise which multiplies
base_salary and annual_adjustment and returns the result
calculate_raise <- function(base_salary, annual_adjustment) {

raise <- base_salary * annual_adjustment
return(raise)

}

Calculate John's raise
johns_raise <- calculate_raise(90000, .05)

5.6. LOOPS 41

#Calculate Jane's raise
janes_raise <- calculate_raise(100000, .045)

print("John's Raise:")

[1] "John's Raise:"

print(johns_raise)

[1] 4500

print("Jane's Raise:")

[1] "Jane's Raise:"

print(janes_raise)

[1] 4500

5.6 Loops
There are two types of loops in R: while loops and for loops.

5.6.1 While Loops
While loops are executed as follows:

Set i equal to 1
i <- 1

While i is less than or equal to three, print i
The loop will increment the value of i after each print
while (i <= 3) {
print(i)
i <- i + 1

}

[1] 1
[1] 2
[1] 3

Additionally, you can add ‘break’ statements to while loops to stop the loop
early.

42 CHAPTER 5. PROGRAMMING BASICS

i <- 1

while (i <= 10) {
print(i)
if (i == 5) {

print("Stopping halfway")
break

}
i <- i + 1

}

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] "Stopping halfway"

5.6.2 For Loops
For loops are executed as follows:

employees <- list("jane", "john")

for (employee in employees) {
print(employee)

}

[1] "jane"
[1] "john"

5.7 Conditionals
You are also able to execute a command if a condition is met by using “if”
statements.

if (2 > 0) {
print("true")

}

[1] "true"

You can add more conditions by adding “else if” statements.

5.8. R PACKAGES 43

if (2 > 3) {
print("two is greater than three")

} else if (2 < 3) {
print("two is not greater than three")

}

[1] "two is not greater than three"

Finally, you can catch anything that doesn’t meet any of your conditions by
adding an “else” statement at the end.

x <- 20
if (x < 20) {

print("x is less than 20")
} else if (x > 20) {

print("x is greater than 20")
} else {

print("x is equal to 20")
}

[1] "x is equal to 20"

5.8 R packages
Packages allow you to access functions other people have created and shared
in a standard format, e.g. via the Comprehensive R Archive Network (CRAN),
Bioconductor, the r-universe or e.g. as github repositories.

To access a package’s functionality, you first have to add it to your system’s
library. Afterward, you can check it out for use in your current session with the
library() command.

In this example, we will be installing and loading a common package named
“dplyr”.

You first retrieve it from CRAN with the following command.

install.packages("dplyr")

Next, you make it available in your R session with the library() command.
(Alternatively, you can also use the require() command.)

library(dplyr)

You are now able to access all of the functions available in the dplyr library!

https://cran.r-project.org/
https://www.bioconductor.org/
https://r-universe.dev/search/
https://github.com/

44 CHAPTER 5. PROGRAMMING BASICS

Sometimes users in the R community create their own packages that aren’t
distributed through the CRAN network. You can still use these packages, but
you’ll just have to perform an extra step or two. One of the most common
places to host packages is Github. The following example will demonstrate how
to load a package that I created from Github.

First you’ll need to install the “remotes” package. As the name might suggest,
this package allows you to access other packages from remote locations.

install.packages("remotes")

Next you’ll need to install the remote package of your choosing. In our case,
we’ll execute the following code.

remotes::install_github("TrevorFrench/trevoR")

In the previous example, we used the “install_github” function from the “re-
motes” package and then specified the Github path of the remote repository by
typing “TrevorFrench/trevoR”. This code is functionally the same as the “in-
stall.packages” function. You may have noticed a new piece of syntax though.
The “::” in between “remotes” and “install_github” tells R to use the “in-
stall_github” function from the “remotes” library without the need to require
the library via the “library” function. This syntax can be used with any other
function from any other library.

Now that the remote package is installed, we can require it in the same way we
would any other package.

library(trevoR)

5.9 Resources
• W3 Schools R Tutorial: https://www.w3schools.com/r/
• Assignment Operators: https://stat.ethz.ch/R-manual/R-devel/library/

base/html/assignOps.html

https://github.com/
https://www.w3schools.com/r/
https://stat.ethz.ch/R-manual/R-devel/library/base/html/assignOps.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/assignOps.html

Chapter 6

Data Types

Data is stored differently depending on what it represents when programming.
For example, a number is going to be stored as a different data type than a
letter is.

There are five basic data types in R that each store a single value:

• Numeric - This is the default type for numbers, e.g. integers and doubles.
– Double - A double allows you to store numbers as decimals. This is

the default treatment for numbers.
– Integer - An integer is a subset of the numeric data type. This type

will only allow whole numbers and is denoted by the letter “L”.
• Complex - This type is created by using the imaginary variable “i”.
• Character - This type is used for storing non-numeric text data.
• Logical - Sometimes referred to as “boolean”, this data type will store

either “TRUE” or “FALSE”.
• Raw - Used less often, this data type will store data as raw bytes.

In addition, each missing values can be specified with the special NA type, which
can represent each of the data types listed above.

6.1 Numeric
6.1.1 Double
Let’s explore the “double” data type by assigning a number to a variable and
then check its type by using the “typeof” function. Alternatively, we can use
the “is.double” function to check whether or not the variable is a double.

x <- 6.2
typeof(x)

45

46 CHAPTER 6. DATA TYPES

[1] "double"

is.double(x)

[1] TRUE

Next, let’s check whether or not the variable is numeric by using the “is.numeric”
function.

is.numeric(x)

[1] TRUE

This function should return “TRUE” as well, which demonstrates the fact that
a double is a subset of the numeric data type.

6.1.2 Integer
Let’s explore the “integer” data type by assigning a whole number followed by
the capital letter “L” to a variable and then check its type by using the “typeof”
function. Alternatively, we can use the “is.integer” function to check whether
or not the variable is an integer.

x <- 6L
By using the "typeof" function, we can check the data type of x
typeof(x)

[1] "integer"

is.integer(x)

[1] TRUE

Next, let’s check whether or not the variable is numeric by using the “is.numeric”
function.

is.numeric(x)

[1] TRUE

This function should return “TRUE” as well, demonstrating that an integer is
also a subset of the numeric data type.

6.2 Complex
Complex data types make use of the mathematical concept of an imaginary
number through the use of the lowercase letter “i”. The following example sets

6.3. CHARACTER 47

“x” equal to six times i and then displays the type of x.

x <- 6i
typeof(x)

[1] "complex"

6.3 Character
Character data types store text data. When creating characters, make sure you
wrap your text in quotation marks.

x <- "Hello!"
typeof(x)

[1] "character"

6.4 Logical
Logical data types store either “TRUE” or “FALSE”. Unlike characters, these
data should not be wrapped in quotation marks.

x <- TRUE
typeof(x)

[1] "logical"

6.5 Raw
Used less often, the raw data type will store data as raw bytes. You can convert
character data types to raw data types by using the “charToRaw” function.
Similarly, you can convert integer data types to raw data types through the use
of the “intToBits” function.

x <- charToRaw("Hello!")
print(x)

[1] 48 65 6c 6c 6f 21

typeof(x)

[1] "raw"

48 CHAPTER 6. DATA TYPES

x <- intToBits(6L)
print(x)

[1] 00 01 01 00
[26] 00 00 00 00 00 00 00

typeof(x)

[1] "raw"

6.6 Resources
• W3 Schools: https://www.w3schools.com/r/r_data_types.asp
• “Advanced R” by Hadley Wickham: https://adv-r.hadley.nz/vectors-

chap.html#atomic-vectors
• “Bits and Bytes” from Stanford CS 101: https://web.stanford.edu/class/

cs101/bits-bytes.html

https://www.w3schools.com/r/r_data_types.asp
https://adv-r.hadley.nz/vectors-chap.html#atomic-vectors
https://adv-r.hadley.nz/vectors-chap.html#atomic-vectors
https://web.stanford.edu/class/cs101/bits-bytes.html
https://web.stanford.edu/class/cs101/bits-bytes.html

Chapter 7

Data Structure

In computer science, a data structure refers to the method which one uses to
organize their data. Six basic data structures are commonly used in R:

• Vectors - Vectors contain ordered data of a single type.
• Lists - Lists are a collection of objects.
• Matrices - A matrix is a two-dimensional array where the data is all of

the same type.
• Factors - Factors are used to designate levels within categorical data.
• Data Frames - A data frame contains two-dimensional data where the

data can have different types.
• Arrays - Arrays are objects which have more than two dimensions (n-

dimensional).

7.1 Vectors
We can create a vector by using the “c” function to combine multiple values
into a single vector. In the following example, we will combine four separate
numbers into a single vector and the output the resulting vector to see what it
looks like.

x <- c(1, 3, 3, 7)

print(x)

[1] 1 3 3 7

49

50 CHAPTER 7. DATA STRUCTURE

7.2 Lists

Lists are a collection of objects. This means that each element can be a different
data type (unlike vectors). In the following example we’ll create a list containing
two character objects and one vector with the “list” function.

first_name <- "John"
last_name <- "Smith"
favorite_numbers <- c(1, 3, 3, 7)

person <- list(first_name, last_name, favorite_numbers)

print(person)

[[1]]
[1] "John"

[[2]]
[1] "Smith"

[[3]]
[1] 1 3 3 7

7.3 Matrices

A matrix is a two-dimensional array where the data is all of the same type. In
the following example, we’ll create a matrix with three rows and four columns.

x <- matrix(
c(1,3,3,7,1,3,3,7,1,3,3,7)
, nrow = 3
, ncol = 4
, byrow = TRUE)

print(x)

[,1] [,2] [,3] [,4]
[1,] 1 3 3 7
[2,] 1 3 3 7
[3,] 1 3 3 7

7.4. FACTORS 51

7.4 Factors
Factors are used to designate levels within categorical data. In the following
example, we’ll use the “factor” function on a vector of assorted color names to
receive the “levels” which it contains.

x <- c("Red", "Blue", "Red", "Yellow", "Yellow")

colors <- factor(x)

print(colors)

[1] Red Blue Red Yellow Yellow
Levels: Blue Red Yellow

7.5 Data Frames
A data frame contains two-dimensional data. Unlike the matrix data structure,
each column of a data frame can contain data of a differing type (but within a
column the data must be of the same type). The following example will create
a data frame with two rows and two columns.

people <- c("John", "Jane")
id <- c(1, 2)
df <- data.frame(id = id, person = people)

print(df)

id person
1 1 John
2 2 Jane

7.6 Arrays
Arrays are objects that can have more than two dimensions. This is sometimes
referred to as being “n-dimensional”. The dimensions of the following example
are 1 x 4 x 3. You’ll see that the data consist of one row and four columns
spread out over a third dimension.

x <- array(
c(1,3,3,7,1,3,3,7,1,3,3,7)
, dim = c(1,4,3))

52 CHAPTER 7. DATA STRUCTURE

print(x)

, , 1

[,1] [,2] [,3] [,4]
[1,] 1 3 3 7

, , 2

[,1] [,2] [,3] [,4]
[1,] 1 3 3 7

, , 3

[,1] [,2] [,3] [,4]
[1,] 1 3 3 7

7.7 Resources
• W3 Schools: https://www.w3schools.com/r/r_vectors.asp

https://www.w3schools.com/r/r_vectors.asp

Exercises

Questions

Exercise: 5-A
Write a function called “multiply” that accepts two numbers as arguments
and outputs the product of those two numbers when called as is demon-
strated below.

multiply(3, 3)
[1] 9

Exercise: 5-B
Write an equation that returns the remainder of 12 divided by 8.

Exercise: 5-C
Write an equation that returns the remainder of 36 divided by 10.

Exercise: 5-D
Write a “while” loop that prints all even numbers from 0 to 10.
It’s possible for this task to be accomplished in several ways; however, the
output of your program should always look like this:

53

54 Exercises

[1] 0
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

Exercise: 5-E
You are given a vector that looks like this:

numbers <- c(0:12)

Write a for loop that loops through your vector and prints any element
greater than or equal to 3.
It’s possible for this task to be accomplished in several ways; however, the
output of your program should always look like this:

[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12

Exercise: 6-A
Convert the following character variable to a variable with the data type
“raw”:

x <- "Trevor rocks"

You should store your raw data in a variable named “raw_data”, print the
data to the console, and check the data type with the “typeof” function.
Your output should look like the following:

Questions 55

print(raw_data)
[1] 54 72 65 76 6f 72 20 72 6f 63 6b 73
typeof(raw_data)
[1] "raw"

Exercise: 6-B
Create a variable named “spending” and give it a value of 120. Then create
a variable named “budget” and give it a value of 100. Next, check whether
spending is greater than budget and store the resulting logical data in a
variable named “over_budget”. Finally, print the value of “over_budget”
variable and check it’s data type with the “typeof” function.
Your final output should look like this:

print(over_budget)
[1] TRUE
typeof(over_budget)
[1] "logical"

Exercise: 7-A
Create a vector named “animal” and give it the following three values:
“cow”, “cat”, “pig”. Create a second vector named “sound” and give it
the following three values: “moo”, “meow”, “oink”. Finally, create a data
frame named “animal_sounds” and assign each of these vectors to be a
column.
After printing the resulting data frame to the console, you should get the
following output:

animal sound
1 cow moo
2 cat meow
3 pig oink

56 Exercises

Answers

Answer: 5-A
One way you could accomplish this task is demonstrated in the following
solution.

multiply <- function(x, y) {
return (x * y)

}

multiply(3, 3)

[1] 9

Answer: 5-B
A remainder is referred to as “modulus” in programming. We can use the
“%%” operator to accomplish this. For this example, the output of your
equation should be 4.

12 %% 8

[1] 4

Answer: 5-C
A remainder is referred to as “modulus” in programming. We can use the
“%%” operator to accomplish this. For this example, the output of your
equation should be 6.

36 %% 10

[1] 6

Answer: 5-D
Here’s one way you could write your while loop to achieve this output:

Answers 57

i <- 0

while (i <= 10) {
print(i)
i <- i + 2

}

[1] 0
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

Answer: 5-E
Here’s one way you could write your for loop to achieve this output:

numbers <- c(0:12)

for (number in numbers) {
if (number >= 3) {
print(number)

}
}

[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
[1] 11
[1] 12

Answer: 6-A
You can accomplish this task with the “charToRaw” function.

58 Exercises

x <- "Trevor rocks"
raw_data <- charToRaw(x)
print(raw_data)

[1] 54 72 65 76 6f 72 20 72 6f 63 6b 73

typeof(raw_data)

[1] "raw"

Answer: 6-B
The following example demonstrates how you can accomplish this task.

spending <- 120
budget <- 100
over_budget <- spending > budget
print(over_budget)

[1] TRUE

typeof(over_budget)

[1] "logical"

Answer: 7-A
The following example demonstrates how you can accomplish this task.

animal <- c("cow", "cat", "pig")
sound <- c("moo", "meow", "oink")
animal_sounds <- data.frame(animal = animal, sound = sound)
print(animal_sounds)

animal sound
1 cow moo
2 cat meow
3 pig oink

Part III

Part II: Data Acquisition

59

61

Before conducting an analysis you must first acquire your data, e.g. via manual
creation, importing pre-constructed data, or leveraging APIs.

• Included Datasets- R comes with a variety of built-in datasets. This
chapter will teach you how to view the catalog of included datasets, pre-
view individual datasets, and begin working with the data.

• Import from Spreadsheets- Most R users will have to work with spread-
sheets at some point in their careers. This chapter will teach you how to
import data from spreadsheets, e.g. from a .csv or .xlsx file, and get the
imported data into a format that’s easy to work with.

• Working with APIs- API stands for Application Programming Interface.
These sorts of tools are commonly used to programmatically pull data from
a third party resource. This chapter demonstrates how you can begin to
leverage these tools in your own workflows.

62

Chapter 8

Included Datasets

R comes with a variety of datasets already built in. This chapter will teach you
how to view the catalog of included datasets, preview individual datasets, and
begin working with the data.

8.1 View Catalog

You can view the complete list of datasets available along with a brief description
for each one by typing “data()” into your console.

data()

This will open a new tab in your RStudio instance that looks similar to the
following image:

63

64 CHAPTER 8. INCLUDED DATASETS

8.2 Working with Included Data
The first step to begin working with your chosen dataset is to load it into your
environment by using the “data” function with the quoted name of your dataset
inside the parentheses. In the following example, we’ll attach the “iris” dataset
to our environment.

Note

It may not be necessary for you to load your dataset via the “data” func-
tion prior to using it. Additionally, some datasets may require you to add
them to your search path by using using the “attach” function (conversely,
you can remove datasets from your search path by using the “detach” func-
tion).

data("iris")

8.2. WORKING WITH INCLUDED DATA 65

This command will add a new object “iris” to our R session. Let’s preview the
“iris” dataset by using the “head” function.

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

Finally, you can view more information about any given dataset by typing its
name into the “Help” tab in the “Files” pane.

66 CHAPTER 8. INCLUDED DATASETS

8.3 Common Datasets
Here are a few other datasets commonly used in the R community to practice
and to teach.

8.3.1 mtcars

head(mtcars)

8.3. COMMON DATASETS 67

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4
Drive

21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

8.3.2 faithful

head(faithful)

eruptions waiting
3.600 79
1.800 54
3.333 74
2.283 62
4.533 85
2.883 55

8.3.3 ChickWeight

head(ChickWeight)

weight Time Chick Diet
42 0 1 1
51 2 1 1
59 4 1 1
64 6 1 1
76 8 1 1
93 10 1 1

68 CHAPTER 8. INCLUDED DATASETS

8.3.4 Titanic

head(Titanic)

, , Age = Child, Survived = No

Sex
Class Male Female
1st 0 0
2nd 0 0
3rd 35 17
Crew 0 0

, , Age = Adult, Survived = No

Sex
Class Male Female
1st 118 4
2nd 154 13
3rd 387 89
Crew 670 3

, , Age = Child, Survived = Yes

Sex
Class Male Female
1st 5 1
2nd 11 13
3rd 13 14
Crew 0 0

, , Age = Adult, Survived = Yes

Sex
Class Male Female
1st 57 140
2nd 14 80
3rd 75 76
Crew 192 20

8.4 Resources
• List of datasets available in Base R: https://www.rdocumentation.org/

packages/datasets/versions/3.6.2

https://www.rdocumentation.org/packages/datasets/versions/3.6.2
https://www.rdocumentation.org/packages/datasets/versions/3.6.2

Chapter 9

Import from Spreadsheets

Most R users will have to work with spreadsheets at some point in their careers.
This chapter will teach you how to import data from a .csv or .xlsx file, and how
to get the imported data into a format that’s easy to work with. Additionally,
this chapter will demonstrate how to import multiple files at once and combine
them all into a single dataframe.

9.1 Import from .csv Files
R has a function called “read.csv” which allows you to read a csv file directly
into a dataframe. The following code snippet is a simple example of how to
execute this function.

Note

It’s worth noting that it isn’t necessary to store the file path as a variable
before calling the function; however, this habit may save you time down
the road.

input <- "C:/File Location/example.csv"
df <- read.csv(input)

Alternatively, if you have multiple files from the same directory that need to be
imported, you could do something more like the following code snippet.

directory <- "C:/File Location/"
first_file <- paste(directory, "first_file.csv", sep="")
second_file <- paste(directory, "second_file.csv", sep="")

69

70 CHAPTER 9. IMPORT FROM SPREADSHEETS

first_df <- read.csv(first_file)
second_df <- read.csv(second_file)

9.2 Import from .xlsx Files
Excel files are handled very similarly to CSV files with the exception being that
you will need to use the “read_excel” function from the “readxl” library. The
following code snippet demonstrates how to import an Excel file into R.

library(readxl)
input <- "C:/File Location/example.xlsx"
df <- read_excel(input)

9.3 Import and Combine Multiple Files
You may come across a situation where you have multiple CSV files in a folder
that need to be combined into a single data frame. The read_csv() function
from the readr package accepts the paths to multiple files and will automatically
concatenate them along their rows (if the columns match).

install.packages("readr")
library(readr)

You can list the paths to all .csv files in a directory with the dir() command:

wd <- "C:/YOURWORKINGDIRECTORY"
dir(wd, full.names = TRUE, pattern = ".csv")

And read them into a single data.frame with a single command:

df <- read_csv(dir(wd, full.names = TRUE, pattern = ".csv"))

Note

All of the headers must match in your CSV files must match exactly for
this function to work as expected.

9.4 Resources
• trevoR package documentation: https://github.com/TrevorFrench/

trevoR

https://github.com/TrevorFrench/trevoR
https://github.com/TrevorFrench/trevoR

Chapter 10

Working with APIs

API stands for Application Programming Interface. These sorts of tools are
commonly used to programmatically pull data from a third party resource. This
chapter demonstrates how one can begin to leverage these tools in their own
workflows.

The following example uses the Helium API to return data about its blockchain
network.

10.1 Install Packages

install.packages(c('httr', 'jsonlite'))

10.2 Load packages from the library

library('httr')
library('jsonlite')

10.3 Make Request
Pass a URL into the ‘GET’ function and store the response in a variable called
‘res’.

res = GET("https://api.helium.io/v1/stats")
print(res)

71

72 CHAPTER 10. WORKING WITH APIS

Response [https://api.helium.io/v1/stats]
Date: 2022-08-04 01:25
Status: 200
Content-Type: application/json; charset=utf-8
Size: 922 B

10.4 Parse & Explore Data
Use the ‘fromJSON’ function from the ‘jsonlite’ package to parse the response
data and then print out the names in the resulting data set.

data = fromJSON(rawToChar(res$content))

names(data)

[1] "data"

Go one level deeper into the data set and print out the names again.

data = data$data

names(data)

[1] "token_supply" "election_times" "counts" "challenge_counts" "block_times"

Alternatively, you can loop through the names as follows.

for (name in names(data)){print(name)}

[1] "token_supply"
[1] "election_times"
[1] "counts"
[1] "challenge_counts"
[1] "block_times"

Get the ‘token_supply’ field from the data.

token_supply = data$token_supply

print(token_supply)

10.5. ADDING PARAMETERS TO REQUESTS 73

[1] 124675821

10.5 Adding Parameters to Requests
Add ‘min_time’ and ‘max_time’ as parameters on a different endpoint and
print the resulting ‘fee’ data.

res = GET("https://api.helium.io/v1/dc_burns/sum",
query = list(min_time = "2020-07-27T00:00:00Z"

, max_time = "2021-07-27T00:00:00Z"))

data = fromJSON(rawToChar(res$content))
fee = data$data$fee
print(fee)

[1] 10112755000

10.6 Adding Headers to Requests
Execute the same query as above except this time specify headers. This will
likely be necessary when working with an API that requires an API Key.

res = GET("https://api.helium.io/v1/dc_burns/sum",
query = list(min_time = "2020-07-27T00:00:00Z"

, max_time = "2021-07-27T00:00:00Z"),
add_headers(`Accept`='application/json', `Connection`='keep-live'))

data = fromJSON(rawToChar(res$content))
fee = data$data$fee
print(fee)

[1] 10112755000

10.7 Resources
• Blog post by Trevor French: https://medium.com/trevor-french/api-calls-

in-r-136290ead81d

10.7.1 Helpful APIs
• Meta Graph API: https://developers.facebook.com/docs/graph-api/

https://medium.com/trevor-french/api-calls-in-r-136290ead81d
https://medium.com/trevor-french/api-calls-in-r-136290ead81d
https://developers.facebook.com/docs/graph-api/

74 CHAPTER 10. WORKING WITH APIS

• Twitter API: https://developer.twitter.com/en/docs/twitter-api
• NASA APIs: https://api.nasa.gov/
• Etherscan API: https://etherscan.io/apis
• Covalent API: https://www.covalenthq.com/docs/api/#/0/0/USD/1
• EDGAR APIs from the SEC: https://www.sec.gov/edgar/sec-api-

documentation
• Weather API: https://openweathermap.org/api
• Helium API: https://docs.helium.com/api/

https://developer.twitter.com/en/docs/twitter-api
https://api.nasa.gov/
https://etherscan.io/apis
https://www.covalenthq.com/docs/api/#/0/0/USD/1
https://www.sec.gov/edgar/sec-api-documentation
https://www.sec.gov/edgar/sec-api-documentation
https://openweathermap.org/api
https://docs.helium.com/api/

Exercises

Questions

Exercise: 8-A
Create a data frame called “cars” that contains the first five rows of the
mtcars dataset by using the “head” function. After printing to the console,
you should get the following result:

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Exercise: 9-A
Write a function named “read_file” which will accept a file name as a
parameter named “file_name”. The function should then read in a csv
with the specified name, store it as a data frame named “df”, and return
“df” as the final output.

Exercise: 9-B
In exercise 9-A you created a function that will allow you to read a csv file.
Extend this function by adding a second parameter named “csv” which will
accept either “TRUE” or “FALSE”. The functionality shouldn’t change if
the parameter is equal to “TRUE”; however, if the function is equal to
“FALSE”, the function should allow the user to read in an xlsx file instead.
For example, if a user wanted to read in a csv file they would use the
function in this way:

75

76 Exercises

read_file("iris.csv", TRUE)

If the user wanted to read in an xlsx file they would use the function in
this way:

read_file("iris.xlsx", FALSE)

Answers

Answer: 8-A
This task can be accomplished with the following code:

cars <- head(mtcars, 5)
print(cars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Answer: 9-A
This task can be accomplished with the following code:

read_file <- function(file_name) {
df <- read.csv(file_name)
return(df)

}

Answer: 9-B
Here’s one way you could write your function to accomplish this task:

Answers 77

library(readxl)

read_file <- function(file_name, csv) {
if (csv == TRUE) {

df <- read.csv(file_name)
return(df)

}

if (csv == FALSE) {
df <- read_excel(file_name)
return(df)

}
}

78 Exercises

Part IV

Part III: Data Preparation

79

81

Most data will not be received in the precise format you need to begin your
analysis. The process of data preparation is where you will structure and add
features to your data.

• Data Cleaning- This chapter will cover the basics of cleaning your data,
including renaming variables, splitting text, replacing values, dropping
columns, and dropping rows. These basic actions will be essential to
preparing your data prior to developing insights.

• Handling Missing Data- You may encounter situations where some of
your data are missing. This chapter will cover best practices on dealing
with missing data and introduce the tools to do so.

• Outliers- Outliers are observations that fall outside the expected scope of
the dataset. It’s important to identify outliers and either choose analyses
strategies that are robust to their presence or deal with them appropriately
before moving into the next analysis phase.

• Organizing Data- This chapter will focus on sorting, filtering, and group-
ing your datasets.

82

Chapter 11

Data Cleaning

This chapter will cover the basics of cleaning your data including renaming
variables, splitting text, replacing values, dropping columns, and dropping rows.
These basic actions will be essential to preparing your data prior to developing
insights.

11.1 Renaming Variables
Let’s begin by creating a dataset we can use to work through some examples.
In our case, we’ll take the first few rows from the “iris” dataset and create a
new dataframe called “df”.

df <- head(iris)
print(df)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

Now, let’s change our column names (which contain different properties of iris
species) into “snake case”, e.g. all words are lowercase and separated by under-
scores. We’ll do this through the use of the “colnames” function. In the following
example, we are renaming each column individually by specifying what number
column to adjust.

83

84 CHAPTER 11. DATA CLEANING

colnames(df)[1] <- "sepal_length"
colnames(df)[2] <- "sepal_width"
colnames(df)[3] <- "petal_length"
colnames(df)[4] <- "petal_width"
colnames(df)[5] <- "species"

sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

Let’s change the column names again, but use “camel case” this time, e.g. the
first word will be lowercase, and all subsequent words will have the first letter
capitalized. Instead of using the column number though, this time we’ll use the
actual name of the column we want to adjust.

colnames(df)[colnames(df) == "sepal_length"] <- "sepalLength"
colnames(df)[colnames(df) == "sepal_width"] <- "sepalWidth"
colnames(df)[colnames(df) == "petal_length"] <- "petalLength"
colnames(df)[colnames(df) == "petal_width"] <- "petalWidth"

sepalLength sepalWidth petalLength petalWidth species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

Alternatively, you can use the “rename” function from the “dplyr” package.

library(dplyr)
df <- rename(df, "plantSpecies" = "species")

sepalLength sepalWidth petalLength petalWidth plantSpecies
5.1 3.5 1.4 0.2 setosa

11.2. SPLITTING TEXT 85

sepalLength sepalWidth petalLength petalWidth plantSpecies
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

11.2 Splitting Text
If you’ve worked in a spreadsheet application before, you’re likely familiar with
the “text-to-columns” tool. This tool allows you to split one column of data into
multiple columns based on a delimiter. This same functionality is also achievable
in R through functions such as the “separate” function from the “tidyr” library.

To test this function out, let’s first attach the “tidyr” package and then create
a test data frame for us to use.

library(tidyr)
df <- data.frame(person = c("John_Doe", "Jane_Doe"))

person
John_Doe
Jane_Doe

We now have a data frame with one column that contains a first name and a
last name combined by an underscore. Let’s now split the two names into their
own separate columns.

df <- df %>% separate(person, c("first_name", "last_name"), "_")

first_name last_name
John Doe
Jane Doe

Let’s break down what just happened. We first declared that “df” was going
to be equal to the output of the function that followed by typing “df <-”. Next
we told the separate function that it would be altering the existing dataframe
called “df” by typing “df %>%”.

We then gave the separate function three arguments. The first argument was
the column we were going to be editing, “person”. The second argument was

86 CHAPTER 11. DATA CLEANING

the names of our two new columns, “first_name” and “last_name”. Finally, the
third argument was our desired delimiter, “_“.

11.3 Replace Values
We’ll next go over how you can replace specific values in a dataset. Let’s begin by
creating a dataset to work with. The following example will create a dataframe
which contains student names and their respective grades on a test.

students <- c("John", "Jane", "Joe", "Janet")
grades <- c(83, 97, 74, 27)
df <- data.frame(student = students, grade = grades)

student grade
John 83
Jane 97
Joe 74
Janet 27

Now that our dataset is assembled, let’s decide that we’re going to institute
a minimum grade of 60. To do this we’re going to need to replace any grade
lower than 60 with 60. The following example demonstrates one way you could
accomplish that.

df[which(df$"grade" < 60), "grade"] <- 60

student grade
John 83
Jane 97
Joe 74
Janet 60

11.4 Drop Columns
Let’s use the “mtcars” dataset to demonstrate how to drop columns

df <- head(mtcars)
print(df)

11.4. DROP COLUMNS 87

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4
Drive

21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Next, we can either drop columns by specifying the columns we want to keep
or by specifying the ones we want to drop. The following example will get rid
of the “carb” column by specifying that we want to keep every other column.

df <- subset(df, select = c(mpg, cyl, disp, hp, drat, wt, qsec, vs, am, gear))

mpg cyl disp hp drat wt qsec vs am gear
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.875 17.02 0 1 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
Hornet 4
Drive

21.4 6 258 110 3.08 3.215 19.44 1 0 3

Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3

Alternatively, let’s try getting rid of the “gear” column directly. We can do this
by putting a “-” in front of the “c” function.

df <- subset(df, select = -c(gear))

mpg cyl disp hp drat wt qsec vs am
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0

88 CHAPTER 11. DATA CLEANING

One other way you could drop columns if you wanted to use index numbers
rather than column names is demonstrated below.

df <- df[,-c(1,3:7)]

cyl vs am
Mazda RX4 6 0 1
Mazda RX4 Wag 6 0 1
Datsun 710 4 1 1
Hornet 4 Drive 6 1 0
Hornet Sportabout 8 0 0
Valiant 6 1 0

As you can see, we used the square brackets to select a subset of our dataframe
and then pasted our values after the comma to declare that we were choosing
columns rather than rows. After that we used the “-” symbol to say that we
were choosing columns to drop rather than columns to keep. Finally, we chose
to drop columns 1 as well as columns 3 through 7.

11.5 Drop Rows
We are also able to drop rows with the same method we just used to drop
columns with the difference being that we would place our values in front of the
comma rather than after the comma. For example, if we wanted to drop the
first two rows (otherwise known as observations) from our previous dataframe,
we could do the following.

df <- df[-c(1:2),]

cyl vs am
Datsun 710 4 1 1
Hornet 4 Drive 6 1 0
Hornet Sportabout 8 0 0
Valiant 6 1 0

11.6 Resources
• “Separate” function documentation: https://tidyr.tidyverse.org/

reference/separate.html

https://tidyr.tidyverse.org/reference/separate.html
https://tidyr.tidyverse.org/reference/separate.html

Chapter 12

Handling Missing Data

You may encounter situations while analysing data that some of your data are
missing. This chapter will cover best practices in regards to handling these
situations as well as the technical details on how to remedy the data.

Missing data will often be represented by either “NA” or “ ” in R. Sometimes
you will be able to manage by just ignoring this data; however, other times you
will need to “impute” the missing data. This just means you end up coming up
with a value that makes sense to use in place of the missing data. The three
imputation methods we are going to cover in this chapter are constant value
imputation, central tendency imputation, and multiple imputation.

12.1 Handling NA/Blank Values
This section will cover common methods and formulas for identifying and iso-
lating missing data. Let’s start by creating a a vector with one “ ” value and a
vector with one “NA” value.

blanks <- c("John", "Jane", "")
nas <- c(NA, "Jane", "Joe")

print(blanks)

[1] "John" "Jane" ""

print(nas)

[1] NA "Jane" "Joe"

89

90 CHAPTER 12. HANDLING MISSING DATA

We can use the “is.na” function to identify data with “NA” values. The following
example demonstrates how the function works. The output ends up being a
“TRUE” or “FALSE” to designate whether each observation is an “NA” value.

is.na(nas)

[1] TRUE FALSE FALSE

We can then take this one step further and use the function to filter for “NA”
values.

only_nas <- nas[is.na(nas)]
print(only_nas)

[1] NA

This works great; however, it’s more likely that you would want to see the values
which aren’t equal to “NA”. This can be accomplished by using the “NOT”
operator “!”.

no_nas <- nas[!is.na(nas)]
print(no_nas)

[1] "Jane" "Joe"

If your missing data is just an empty string (““) rather than an”NA” value, you
can use simple comparison operators to accomplish the same thing.

blanks == ""

[1] FALSE FALSE TRUE

only_blanks <- blanks[blanks == ""]
print(only_blanks)

[1] ""

no_blanks <- blanks[blanks != ""]
print(no_blanks)

[1] "John" "Jane"

When working with dataframes rather than just vectors, you can also use the
“na.omit” function to remove complete rows with “NA” values.

12.2. CONSTANT VALUE IMPUTATION 91

students <- c("John", "Jane", "Joe")
scores <- c(100, 80, NA)
df <- data.frame(student = students, score = scores)
print(df)

student score
1 John 100
2 Jane 80
3 Joe NA

df <- na.omit(df)
print(df)

student score
1 John 100
2 Jane 80

12.2 Constant Value Imputation
Many datasets you encounter will likely be missing data. The temptation may be
to immediately disregard these observations; however, it’s important to consider
what missing data represents in the context of your dataset as well as the context
of what your analysis is hoping to achieve. For example, say you are a teacher
and you are trying to determine the average test scores of your students. You
have a dataset which lists your students names along with their respective test
scores. However, you find that one of your students has an “NA” value in place
of a test score.

students <- c("John", "Jane", "Joe")
scores <- c(100, 80, NA)
df <- data.frame(student = students, score = scores)

print(df)

student score
1 John 100
2 Jane 80
3 Joe NA

Depending on the context, it may make sense for you to ignore this observation
prior to calculating the average score. It could also make sense for you to assign
a value of “0” to this student’s test score.

Let’s demonstrate how you would replace “NA” values with a constant value of
“0”.

92 CHAPTER 12. HANDLING MISSING DATA

df[is.na(df)] <- 0
print(df)

student score
1 John 100
2 Jane 80
3 Joe 0

12.3 Central Tendency Imputation
Two of the most common measures of central tendency are “mean” and “median”.
Suppose you have a dataset that tracks the time employees spend performing a
certain task. After review, you realize that several employees have not histori-
cally tracked their time. Instead of just ignoring these entries, you decide to try
imputing these values.

employees <- c("John", "Jane", "Joe", "Janet")
hours_spent <- c(12, 14, NA, 9)
df <- data.frame(employee = employees, hours_spent = hours_spent)

print(df)

employee hours_spent
1 John 12
2 Jane 14
3 Joe NA
4 Janet 9

The following example demonstrates how you can replace missing values with
an average of the rest of the employees’ time spent.

mean_value <- mean(df$hours_spent[!is.na(df$hours_spent)])
print(mean_value)

[1] 11.66667

df$hours_spent[is.na(df$hours_spent)] <- mean_value
print(df)

employee hours_spent
1 John 12.00000
2 Jane 14.00000
3 Joe 11.66667
4 Janet 9.00000

12.4. MULTIPLE IMPUTATION 93

Alternatively, we can reset our dataframe and replace “NA” values with the
median value by doing the following.

RESET DATAFRAME
df$hours_spent <- hours_spent

SET MISSING VALUES TO MEDIAN
median_value <- median(df$hours_spent[!is.na(df$hours_spent)])
print(median_value)

[1] 12

df$hours_spent[is.na(df$hours_spent)] <- median_value
print(df)

employee hours_spent
1 John 12
2 Jane 14
3 Joe 12
4 Janet 9

12.4 Multiple Imputation
The two previous examples are types of “single value imputation” as both ex-
amples took one value and applied it to every missing value in the dataset. At
a very basic level, multiple imputation requires users to come up with some
sort of model to fill in missing values. In the following example we are going
to demonstrate how you might use a simple linear regression model to perform
multiple imputation.

Note

Linear regression is covered more in-depth later in this book. Don’t worry
if this example feels completely unfamiliar at this point.

We’ll begin by creating a dataframe with both an “x” and a “y” variable.

y <- c(10, 8, NA, 9, 4, NA)
x <- c(8, 6, 9, 7, 2, 12)
df <- data.frame(y = y, x = x)

print(df)

y x

94 CHAPTER 12. HANDLING MISSING DATA

1 10 8
2 8 6
3 NA 9
4 9 7
5 4 2
6 NA 12

Next, let’s use the “lm” function to create a linear model and then print out a
summary of that model.

model <- lm(y ~ x)
summary(model)

Warning in summary.lm(model): essentially perfect fit: summary may be unreliable

Call:
lm(formula = y ~ x)

Residuals:
1 2 4 5
0 0 0 0

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2 0 Inf <2e-16 ***
x 1 0 Inf <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0 on 2 degrees of freedom
(2 observations deleted due to missingness)

Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: Inf on 1 and 2 DF, p-value: < 2.2e-16

From the model summary, we can see that we have a model with a high level
of statistical significance. Let’s now use the model coefficients to impute our
missing values.

imputed <- predict(model, newdata = list(x = df$x[is.na(df$y)]))
df$y[is.na(df$y)] <- imputed
print(df)

y x
1 10 8
2 8 6
3 11 9
4 9 7

12.5. RESOURCES 95

5 4 2
6 14 12

12.5 Resources
• “Missing-data Imputation” from Columbia: http://www.stat.columbia.

edu/~gelman/arm/missing.pdf

http://www.stat.columbia.edu/~gelman/arm/missing.pdf
http://www.stat.columbia.edu/~gelman/arm/missing.pdf

96 CHAPTER 12. HANDLING MISSING DATA

Chapter 13

Outliers

Outliers are observations that fall outside the expected scope of the dataset.
It’s important to identify outliers in your data and determine the necessary
treatment for them before moving into the next analysis phase.

For example, it might be necessary to impute values, remove a row, perform
sensitivity analysis, or choose analysis methods that are robust in the presence
of outliers.

13.1 Finding Outliers Visually
One common first step many people employ when looking for outliers is visualiz-
ing their datasets so that extreme values can quickly be spotted This section will
briefly cover several common visualizations used to identify outliers; however,
each of these plots will be explored more in-depth later in the book.

13.1.1 Scatter Plot

This is probably the first plot you’ll reach for when trying to visualize outliers
in your data. The scatter plot is a great tool to quickly visualize your data at
a high level and see if anything major stands out.

plot(mtcars$mpg)

97

98 CHAPTER 13. OUTLIERS

0 5 10 15 20 25 30

10
15

20
25

30

Index

m
tc

ar
s$

m
pg

Here’s how a scatter plot with an extreme outlier might look.

data <- c(1,4,7,9,2,6,3,99,4,2,7,8)
plot(data)

2 4 6 8 10 12

0
20

60
10

0

Index

da
ta

13.1. FINDING OUTLIERS VISUALLY 99

13.1.2 Box Plot

Another way to quickly visualize outliers is to use the “boxplot” function. This
plot will allow you to evaluate outliers in a more systematic way.

boxplot(mtcars$mpg)

10
15

20
25

30

The solid black line represents the median value of your dataset. The top and
bottom “whiskers” represent your extreme values (minimum and maximum).
The top and bottom of the “box” represent the first and third quartile.

Here’s an example of a box plot with an extreme outlier.

boxplot(data)

100 CHAPTER 13. OUTLIERS

0
20

60
10

0

13.1.3 Histogram
Histograms will allow you to see how often values occur within certain buckets.

hist(mtcars$mpg)

Histogram of mtcars$mpg

mtcars$mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
12

13.1. FINDING OUTLIERS VISUALLY 101

Here’s a histogram with data that contains an outlier.

hist(data)

Histogram of data

data

F
re

qu
en

cy

0 20 40 60 80 100

0
2

4
6

8
10

13.1.4 Density Plot

Density plots can be thought of as a smoothed version of a histogram. (You can
tune the degree of smoothing, e.g. via the adjust argument to the density()
function.)

plot(density(mtcars$mpg))

102 CHAPTER 13. OUTLIERS

10 20 30 40

0.
00

0.
03

0.
06

density.default(x = mtcars$mpg)

N = 32 Bandwidth = 2.477

D
en

si
ty

Here’s an example of a density plot with data that contains an outlier.

plot(density(data))

0 20 40 60 80 100

0.
00

0.
04

0.
08

density.default(x = data)

N = 12 Bandwidth = 1.839

D
en

si
ty

13.2. FINDING OUTLIERS STATISTICALLY 103

13.2 Finding Outliers Statistically
While examining your data visually may be a convenient and sufficient way
to detect outliers in your data, sometimes you may require a more rigorous
approach to outlier detection.

13.2.1 Standard Deviation
One simple way to check the extremity of your observation is to calculate how
many standard deviations it falls from the mean.

Let’s start by calculating the standard deviation of our dataset by using the
“sd” function.

sd <- sd(data)
print(sd)

[1] 27.31078

Next, let’s calculate the mean of our dataset.

mean <- mean(data)
print(mean)

[1] 12.66667

Finally, for each record in our vector, let’s calculate how many standard devia-
tions it falls from the mean.

extremity <- abs(data - mean) / sd
print(extremity)

[1] 0.4271817 0.3173350 0.2074883 0.1342571 0.3905661 0.2441038 0.3539506
[8] 3.1611447 0.3173350 0.3905661 0.2074883 0.1708727

13.3 Removing Outliers
After identifying your outliers you have several options to remove them.

Your first option would be to manually remove a specific outlier.

manually_cleaned <- data[data != 99]
print(manually_cleaned)

[1] 1 4 7 9 2 6 3 4 2 7 8

104 CHAPTER 13. OUTLIERS

A more robust option would be to rely on your previously performed calculations
to remove any observations which are located too far away from the mean.

statistically_cleaned <- data[extremity < 3]
print(statistically_cleaned)

[1] 1 4 7 9 2 6 3 4 2 7 8

13.4 Resources
“Statistics - Standard Deviation” by W3 Schools: https://www.w3schools.
com/statistics/statistics_standard_deviation.php “Identifying outliers
with the 1.5xIQR rule”: https://www.khanacademy.org/math/statistics-
probability/summarizing-quantitative-data/box-whisker-plots/a/identifying-
outliers-iqr-rule

https://www.w3schools.com/statistics/statistics_standard_deviation.php
https://www.w3schools.com/statistics/statistics_standard_deviation.php
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/identifying-outliers-iqr-rule
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/identifying-outliers-iqr-rule
https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/box-whisker-plots/a/identifying-outliers-iqr-rule

Chapter 14

Organizing Data

This chapter will focus on sorting, filtering, and grouping your datasets.

14.1 Sort, Order, and Rank
Three functions you may use to organize your data are “sort”, “order”, and
“rank”. The following examples will go through each one and show you how to
use them.

Let’s start by creating a vector to work with.

completed_tasks <- c(5, 9, 3, 2, 7)
print(completed_tasks)

[1] 5 9 3 2 7

Next we’ll sort our data by using the “sort” function. This function will return
your original data but sorted in ascending order.

sort(completed_tasks)

[1] 2 3 5 7 9

Alternatively, you can set the “decreasing” parameter to “TRUE” to sort your
data in descending order.

sort(completed_tasks, decreasing = TRUE)

[1] 9 7 5 3 2

105

106 CHAPTER 14. ORGANIZING DATA

The “order” function will return the index of each item in your vector in sorted
order. This function also has a “decreasing” parameter which can be set to
“TRUE”.

order(completed_tasks)

[1] 4 3 1 5 2

Finally, the “rank” function will return the rank of each item in your vector in
ascending order.

rank(completed_tasks)

[1] 3 5 2 1 4

14.2 Filtering
You may have noticed in previous chapters that we’ve used comparison operators
to filter our data. Let’s review by filtering out completed tasks greater than or
equal to 7.

completed_tasks[completed_tasks < 7]

[1] 5 3 2

Alternatively, you can use the “filter” function from the “dplyr” library. Let’s
use this function with the “iris” dataset to filter out any species other than
virginica.

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

library(dplyr)
virginica <- filter(iris, Species == "virginica")

14.3. GROUPING 107

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
6.3 2.9 5.6 1.8 virginica
6.5 3.0 5.8 2.2 virginica
7.6 3.0 6.6 2.1 virginica

14.3 Grouping
One final resource for you to leverage as you organize your data is the
“group_by” function from the “dplyr” library.

If we wanted to group the iris dataset by species we might do something similar
to the following example.

library(dplyr)
grouped_species <- iris %>% group_by(Species)

Now if we print out our resulting dataset you’ll notice that the “group_by”
operation we just performed doesn’t change how the data looks by itself.

head(grouped_species)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

In order to change the structure of our dataset we’ll need to specify how our
groups should be treated by combining the “group_by” function with another
dplyr “verb” such as “summarise”.

grouped_species <- grouped_species %>% summarise(
sepal_length = mean(Sepal.Length),
sepal_width = mean(Sepal.Width),
petal_length = mean(Petal.Length),
petal_width = mean(Petal.Width)

)

108 CHAPTER 14. ORGANIZING DATA

head(grouped_species)

Species sepal_length sepal_width petal_length petal_width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Now each of the three species in the iris dataset have their average sepal length,
sepal width, petal length, and petal width displayed.

You can find more information about the “group_by” function and other dplyr
“verbs” in the resources section below.

14.4 Resources
• dplyr “filter” function documentation: https://dplyr.tidyverse.org/

reference/filter.html
• dplyr “group_by” function documentation: https://dplyr.tidyverse.org/

reference/group_by.html

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/group_by.html

Exercises

Questions

Exercise: 11-A
Create a dataframe named “df” which is equal to the first three columns
and the first five rows of the “mtcars” dataset. Next, rename the “mpg”
column to “miles_per_gallon”.
After printing the resulting dataframe to the console you should have the
following results:

miles_per_gallon cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

Exercise: 12-A
You are given the following dataframe:

109

110 Exercises

var_1 <- c(3, 4, 2, 9, NA, 2, 7)
var_2 <- c(8, NA, 6, 4, 8, 5, 5)
df <- data.frame(var_1 = var_1, var_2 = var_2)
print(df)
var_1 var_2
1 3 8
2 4 NA
3 2 6
4 9 4
5 NA 8
6 2 5
7 7 5

Create a new dataframe called “cleaned_df” which is equal to “df” except
with both rows which contain “NA” values removed.
The final output of “cleaned_df” should look like this:

var_1 var_2
1 3 8
3 2 6
4 9 4
6 2 5
7 7 5

Exercise: 12-B
Take the original “df” dataframe from exercise 12-A and apply a constant
value of “5” to each “NA” value. Store this new dataframe in a variable
named “constant_value”.
Your final output after printing “constant_value” to the console should
look like this:

print(constant_value)
var_1 var_2
1 3 8
2 4 5
3 2 6
4 9 4
5 5 8
6 2 5
7 7 5

Answers 111

Exercise: 12-C
Take the same “df” dataframe from exercises 12-A and 12-B and apply an
average value of each column to “NA” values in each respective column.
Store this new dataframe in a variable named “mean_value”.
Your final output after printing “mean_value” to the console should look
like this:

print(mean_value)
var_1 var_2
1 3.0 8
2 4.0 6
3 2.0 6
4 9.0 4
5 4.5 8
6 2.0 5
7 7.0 5

Exercise: 13-A
Use the “Nile” dataset to create a histogram to view the distribution of
it’s data.

Exercise: 14-A
Take the dataframe created in exercise 11-A and drop any row where the
“disp” column is equal to “160”.
You should receive the following results when you print the resulting
dataframe to the console.

miles_per_gallon cyl disp
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

Answers

Answer: 11-A
This task could be accomplished in the following way:

112 Exercises

library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

filter, lag
The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

df <- mtcars[1:5, 1:3]
df <- rename(df, "miles_per_gallon" = "mpg")
print(df)

miles_per_gallon cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

Answer: 12-A
This task could be accomplished in the following way:

var_1 <- c(3, 4, 2, 9, NA, 2, 7)
var_2 <- c(8, NA, 6, 4, 8, 5, 5)
df <- data.frame(var_1 = var_1, var_2 = var_2)
cleaned_df <- na.omit(df)
print(cleaned_df)

var_1 var_2
1 3 8
3 2 6
4 9 4
6 2 5
7 7 5

Answer: 12-B
There are several ways this task could be accomplished; however, the
following example demonstrates one way to do it.

Answers 113

var_1 <- c(3, 4, 2, 9, NA, 2, 7)
var_2 <- c(8, NA, 6, 4, 8, 5, 5)
df <- data.frame(var_1 = var_1, var_2 = var_2)

constant_value <- df
constant_value[is.na(constant_value)] <- 5
print(constant_value)

var_1 var_2
1 3 8
2 4 5
3 2 6
4 9 4
5 5 8
6 2 5
7 7 5

Answer: 12-C
There are several ways this task could be accomplished; however, the
following example demonstrates one way to do it.

var_1 <- c(3, 4, 2, 9, NA, 2, 7)
var_2 <- c(8, NA, 6, 4, 8, 5, 5)
df <- data.frame(var_1 = var_1, var_2 = var_2)

mean_1 <- mean(df$var_1[!is.na(df$var_1)])
mean_2 <- mean(df$var_2[!is.na(df$var_2)])

mean_value <- df
mean_value$var_1[is.na(mean_value$var_1)] <- mean_1
mean_value$var_2[is.na(mean_value$var_2)] <- mean_2
print(mean_value)

var_1 var_2
1 3.0 8
2 4.0 6
3 2.0 6
4 9.0 4
5 4.5 8
6 2.0 5
7 7.0 5

114 Exercises

Answer: 13-A

hist(Nile)

Histogram of Nile

Nile

F
re

qu
en

cy

400 600 800 1000 1200 1400

0
5

10
20

Answer: 14-A
This task could be accomplished in the following way:

library(dplyr)
df <- mtcars[1:5, 1:3]
df <- rename(df, "miles_per_gallon" = "mpg")

df <- filter(df, disp != 160)
print(df)

miles_per_gallon cyl disp
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360

Part V

Part IV: Developing
Insights

115

117

“A learning organization is an organization skilled at creating, ac-
quiring, and transferring knowledge, and at modifying its behavior
to reflect new knowledge and insights.” -David A. Garvin (Garvin
1993)

Once your data is prepared, you can begin to make sense of it and develop
insights about its meaning. For many, this is where the data analysis process
becomes the most fulfilling. This is the point where you get to reap what you’ve
sown in the previous phases of the data analysis lifecycle.

• Summary Statistics- Summary statistics are usually where one
starts when beginning to develop insights. You may hear the phrase
“Exploratory Data Analysis” (sometimes abbreviated “EDA”) through-
out your career. This is the point where you try to get a high-level
understanding of your data through methods such as summary statistics.

• Regression- Regression is a common statistical technique employed by
many to make generalizations as well as predictions about data.

• Plotting- This chapter will cover the basics of creating plots in R. It will
begin by demonstrating the plotting capabilities available in R “out of
the box”. You will also be given resources to learn more about “ggplot2”
which is one of the most common plotting libraries in R.

118

Chapter 15

Summary Statistics

Summary statistics (otherwise known as descriptive statistics) are usually where
one starts when beginning to develop insights. You may hear the phrase “Ex-
ploratory Data Analysis” (sometimes abbreviated “EDA”) throughout your ca-
reer. This is the point where you try to get a high-level understanding of the
distributions and relationships within your dataset.

15.1 Quantitative Data
When dealing with continuous data, one of the quickest ways to get a high
level view of your data is by using the “summary” function. This function will
return your extreme (minimum and maximum) values, your median, mean, 1st
quantile, and 3rd quantile.

summary(mtcars$mpg)

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90

Alternatively, you can use the following eight functions to retrieve specific infor-
mation about your data.

Returns the average
mean(mtcars$mpg)

[1] 20.09062

Returns the median
median(mtcars$mpg)

119

120 CHAPTER 15. SUMMARY STATISTICS

[1] 19.2

Returns the standard deviation
sd(mtcars$mpg)

[1] 6.026948

Returns the sample variance
var(mtcars$mpg)

[1] 36.3241

Returns the minimum value
min(mtcars$mpg)

[1] 10.4

Returns the maximum value
max(mtcars$mpg)

[1] 33.9

Returns the minimum and maximum value
range(mtcars$mpg)

[1] 10.4 33.9

Returns quantile data
quantile(mtcars$mpg)

0% 25% 50% 75% 100%
10.400 15.425 19.200 22.800 33.900

15.2 Qualitative Data
If you’re working with data that is categorical and encoded as a factor, you can
view all categories by using the “levels” function.

levels(iris$Species)

[1] "setosa" "versicolor" "virginica"

However, if you want to count the number of occurrences for each level, you can
use the “table” function.

15.3. RESOURCES 121

table(iris$Species)

setosa versicolor virginica
50 50 50

If you need to keep digging for insights, you can represent your categories how-
ever you’d like to using the “group_by” function covered in the last chapter.

15.3 Resources
• “Exploring Data and Descriptive Statistics (using R)” from princeton:

https://www.princeton.edu/~otorres/sessions/s2r.pdf

https://www.princeton.edu/~otorres/sessions/s2r.pdf

122 CHAPTER 15. SUMMARY STATISTICS

Chapter 16

Regression

Regression is a common statistical technique employed by many to make gener-
alizations as well as predictions about data.

Note

The purpose of this chapter is to give readers a high-level overview of how
to apply regression techniques in R rather than to give a full introduction
to regression itself. However, there are multiple comprehensive resources
in the resources section for interested readers.

16.1 Linear Regression
The first kind of regression we’ll cover is linear regression. Linear regression will
use your data to come up with a linear model that describes the general trend
of your data. Generally speaking, a linear model will consist of a dependent
variable (y), at least one independent variable (x), coefficients to go along with
each independent variable, and an intercept. Here’s one common linear model
you may remember:

𝑦 = 𝑚𝑥 + 𝑏

This is a simple linear model many people begin with where x and y are the
independent and dependent variables, respectively, m is the slope (or coefficient
of x), and b is the intercept.

To perform linear regression in R, you’ll use the “lm” function. Let’s try it out
on the “faithful” dataset.

123

124 CHAPTER 16. REGRESSION

head(faithful)

eruptions waiting
3.600 79
1.800 54
3.333 74
2.283 62
4.533 85
2.883 55

The “lm” function will accept at least two parameters which represent “y” and
“x” in this format:

lm(y ~ x)

Let’s try this out by setting the y variable to eruptions and the x variable
to waiting. We can then view the output of our linear model by using the
“summary” function.

lm <- lm(faithful$eruptions ~ faithful$waiting)
summary(lm)

Call:
lm(formula = faithful$eruptions ~ faithful$waiting)

Residuals:
Min 1Q Median 3Q Max

-1.29917 -0.37689 0.03508 0.34909 1.19329

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.874016 0.160143 -11.70 <2e-16 ***
faithful$waiting 0.075628 0.002219 34.09 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4965 on 270 degrees of freedom
Multiple R-squared: 0.8115, Adjusted R-squared: 0.8108
F-statistic: 1162 on 1 and 270 DF, p-value: < 2.2e-16

This summary will show us the statistical significance of our model along with
all relevant statistics to correctly interpret the significance. Additionally, we
now have our model coefficients. From this summary we can assume that our
model looks something like this:

16.2. MULTIPLE REGRESSION 125

𝑒𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 ∗ 0.075628 − 1.874016

Let’s break down everything that the model summary returns.

• The “Call” section calls the model that you created
• The “Residuals” section gives you a summary of all of your model residuals.

Simply put, a residual denotes how far away any given point falls from
the predicted value.

• The “Coefficients” section gives us our model coefficients, our intercept,
and statistical values to determine their significance.

– For each coefficient, we are given the respective standard error. The
standard error is used to measure the precision of coefficient’s esti-
mate.

– Next, we have a t value for each coefficient. The t value is calculated
by dividing the coefficient by the standard error.

– Finally, you have the p value accompanied by symbols to denote the
corresponding significance level.

• The residual standard error gives you a way to measure the standard
deviation of the residuals and is calculated by dividing residual sum of
squares by the residual degrees of freedom and taking the square root of
that where the residual degrees of freedom is equal to total observations -
total model parameters - 1.

• R-squared gives you the proportion of variance that can be explained by
your model. Your adjusted R-squared statistic will tell you the same thing
but will adjust for the number of variables you’ve included in your model.

• Your F-statistic will help you to understand the probability that all of
your model parameters are actually equal to zero.

16.2 Multiple Regression
If you had more x variables you wanted to add to your linear model, you could
add them just like you would in any other math equation. Here’s an example:

lm(data$y ~ data$x1 + data$x2 + data$x3 + data$x4)

Additionally, you can use the “data” parameter rather than putting the name
of the dataset before every variable.

lm(y ~ x1 + x2 + x3 + x4, data = data)

Let’s try a real example with the mtcars dataset.

head(mtcars)

126 CHAPTER 16. REGRESSION

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4
Wag

21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4
Drive

21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

Hornet
Sportabout

18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Now, let’s try to predict mpg and use every other column as a variable then see
what the results look like.

lm <- lm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
, data = mtcars)

summary(lm)

Call:
lm(formula = mpg ~ cyl + disp + hp + drat + wt + qsec + vs +

am + gear + carb, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-3.4506 -1.6044 -0.1196 1.2193 4.6271

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.30337 18.71788 0.657 0.5181
cyl -0.11144 1.04502 -0.107 0.9161
disp 0.01334 0.01786 0.747 0.4635
hp -0.02148 0.02177 -0.987 0.3350
drat 0.78711 1.63537 0.481 0.6353
wt -3.71530 1.89441 -1.961 0.0633 .
qsec 0.82104 0.73084 1.123 0.2739
vs 0.31776 2.10451 0.151 0.8814
am 2.52023 2.05665 1.225 0.2340
gear 0.65541 1.49326 0.439 0.6652
carb -0.19942 0.82875 -0.241 0.8122

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.65 on 21 degrees of freedom
Multiple R-squared: 0.869, Adjusted R-squared: 0.8066

16.3. LOGISTIC REGRESSION 127

F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

From here, you would likely tweak your model further based on the significance
statistics we see here; however, that’s outside the scope of what we’re doing in
this book. Take a look in the resources section at the end of this chapter to dive
deeper into developing regression models.

16.3 Logistic Regression
Logistic regression is commonly used when your dependent variable (y) binomial
(0 or 1). Instead of using the “lm” function though, you will use the “glm”
function. Let’s try this out on the mtcars dataset again but this time with “am”
as the dependent variable.

glm <- glm(am ~ cyl + hp + wt, family = binomial, data = mtcars)
summary(glm)

Call:
glm(formula = am ~ cyl + hp + wt, family = binomial, data = mtcars)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.17272 -0.14907 -0.01464 0.14116 1.27641

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 19.70288 8.11637 2.428 0.0152 *
cyl 0.48760 1.07162 0.455 0.6491
hp 0.03259 0.01886 1.728 0.0840 .
wt -9.14947 4.15332 -2.203 0.0276 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 43.2297 on 31 degrees of freedom
Residual deviance: 9.8415 on 28 degrees of freedom
AIC: 17.841

Number of Fisher Scoring iterations: 8

16.4 Resources
• “Lecture 9 - Linear regression in R” by Professor Alexandra Choulde-

chova at Carnegie Mellon University: https://www.andrew.cmu.edu/user/

https://www.andrew.cmu.edu/user/achoulde/94842/lectures/lecture09/lecture09-94842.html

128 CHAPTER 16. REGRESSION

achoulde/94842/lectures/lecture09/lecture09-94842.html

• “Logistic Regression” by Erin Bugbee and Jared Wilber: https://mlu-
explain.github.io/logistic-regression/

• “Visualizing OLS Linear Regression Assumptions in R” by Trevor French
https://medium.com/trevor-french/visualizing-ols-linear-regression-
assumptions-in-r-e762ba7afaff

https://www.andrew.cmu.edu/user/achoulde/94842/lectures/lecture09/lecture09-94842.html
https://www.andrew.cmu.edu/user/achoulde/94842/lectures/lecture09/lecture09-94842.html
https://mlu-explain.github.io/logistic-regression/
https://mlu-explain.github.io/logistic-regression/
https://medium.com/trevor-french/visualizing-ols-linear-regression-assumptions-in-r-e762ba7afaff
https://medium.com/trevor-french/visualizing-ols-linear-regression-assumptions-in-r-e762ba7afaff

Chapter 17

Plotting

This chapter will cover the basics of creating plots in R. It will begin by demon-
strating the plotting capabilities available in R out of the box. These capabilities
are often referred to as “Base R”. In the resources section, you can also find re-
sources to learn more about “ggplot2” which is one of the most common plotting
libraries in R.

17.1 Plotting your Regression Model
Now that you’ve learned how create a linear regression model, let’s look at how
you might go about representing it visually.

Here’s a preview of the dataset we’ll be using:

y x
-4.400327 1
5.428396 2
1.401835 3
8.347445 4
4.653595 5
1.768966 6

We’ll begin by just creating a scatter plot of the raw data.

plot(dfx, dfy)

129

130 CHAPTER 17. PLOTTING

0 20 40 60 80 100

0
40

80

df$x

df
$y

Additionally, you can alter the appearance of your points by using the “pch”,
“cex”, and “col” options. PCH stands for Plot Character and will adjust the
symbol used for your points. The available point shapes are listed in the image
below.

ggpubr::show_point_shapes()

17.1. PLOTTING YOUR REGRESSION MODEL 131

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25

Point shapes available in R

The “cex” option allows you to adjust the symbol size. The default value is 1.
If you were to change the value to .75, for example, the plot symbol would be
scaled down the 3/4 of the default size. The “col” option allows you to adjust
the color of your plot symbols.

plot(df$x
, df$y
, col=rgb(0.4,0.4,0.8,0.6)
, pch=16
, cex=1.2)

132 CHAPTER 17. PLOTTING

0 20 40 60 80 100

0
40

80

df$x

df
$y

You can adjust the axes with the “xlab”, “ylab”, “xaxt”, and “yaxt” options
(amongst other available options). In the following example we will remove the
axes altogether.

plot(df$x
, df$y
, col=rgb(0.4,0.4,0.8,0.6)
, pch=16
, cex=1.2
, xlab=""
, ylab=""
, xaxt="n"
, yaxt="n")

17.1. PLOTTING YOUR REGRESSION MODEL 133

Finally, you can add a trend line by creating a model and adding the fitted
values to the graph. We’ll also adjust the line width and color with the “lwd”
and “col” parameters, respectively.

plot(df$x
, df$y
, col=rgb(0.4,0.4,0.8,0.6)
, pch=16
, cex=1.2
, xlab=""
, ylab=""
, xaxt="n"
, yaxt="n")

model <- lm(df$y ~ df$x)
abline(model, col=2, lwd=2)

134 CHAPTER 17. PLOTTING

The model also returns confidence intervals for the predictions, which can be
added

Extract the upper and lower 95% confidence intervals of the predictions
conf_interval <- predict(
model,
newdata=data.frame(x=df$x),
interval = "prediction",
level = 0.95)

plot(df$x
, df$y
, col=rgb(0.4,0.4,0.8,0.6)
, pch=16
, cex=1.2
, xlab=""
, ylab=""
, xaxt="n"
, yaxt="n")

abline(model, col=2, lwd=2)
lines(df$x, conf_interval[,2], col="blue", lty=2)
lines(df$x, conf_interval[,3], col="blue", lty=2)

17.2. PLOTS AVAILABLE IN BASE R 135

17.2 Plots Available in Base R

Now that you’ve seen how to build a scatterplot in R, let’s take a look at other
plots available in Base R.

17.2.1 Box Plot

One plot you’ve already seen in the outliers chapter is the box plot. These plots
can be created via the “boxplot” function.

boxplot(mtcars$mpg)

136 CHAPTER 17. PLOTTING

10
15

20
25

30

We can build on this plot by specifying the dataset with the “data” parameter,
removing the “mtcars$” prefix from our variable, adding a plot title with the
“main” parameter, and adding axis labels with the “xlab” and “ylab” parameters.
Additionally, we are going to add an additional variable for our data to be
categorized by.

boxplot(mpg ~ gear
, data = mtcars
, main = "Car Mileage by Gear"
, xlab = "Number of Forward Gears"
, ylab = "Miles Per Gallon")

17.2. PLOTS AVAILABLE IN BASE R 137

3 4 5

10
15

20
25

30
Car Mileage by Gear

Number of Forward Gears

M
ile

s
P

er
 G

al
lo

n

Finally, we can set the box colors with the “col” parameter and set “notch”
equal to “TRUE” to give our boxes notches. If the notches of two plots do
not overlap this is ‘strong evidence’ that the two medians differ Chambers and
Tukey (1983).

boxplot(mpg ~ am
, data = mtcars
, notch = TRUE
, col = (c("blue", "grey"))
, main = "Car Mileage by Engine"
, xlab = "Automatic?"
, ylab = "Miles Per Gallon")

138 CHAPTER 17. PLOTTING

0 1

10
15

20
25

30

Car Mileage by Engine

Automatic?

M
ile

s
P

er
 G

al
lo

n

17.2.2 Plot Matrix
You can use the “pairs” function to create a plot matrix. Let’s use the iris
dataset to demonstrate this.

pairs(iris)

Sepal.Length

2.
0

4.
0

0.
5

2.
5

4.5 6.0 7.5

2.0 3.0 4.0

Sepal.Width

Petal.Length

1 3 5 7

0.5 1.5 2.5

Petal.Width

4.
5

7.
5

1
4

7

1.0 2.0 3.0

1.
0

2.
5

Species

17.2. PLOTS AVAILABLE IN BASE R 139

This plot gives us the ability to see how each variable interacts with one another.

17.2.3 Pie Chart

Let’s try plotting a pie chart of species in the iris dataset via the “pie” function.
This function accepts numerical values so we’ll need to use the “table” function
on our column as well.

pie(table(iris$Species))

setosa

versicolor

virginica

You can view the full list of available parameters for this and other functions
through the help tab in the files pane in R Studio.

140 CHAPTER 17. PLOTTING

17.2.4 Bar Plot

Let’s try a bar plot on the same dataset with the “barplot” function.

barplot(table(iris$Species))

17.2. PLOTS AVAILABLE IN BASE R 141

setosa versicolor virginica

0
10

20
30

40
50

17.2.5 Histogram
You may recall that we also used histigrams in the outliers chapter to try to
visually identify extreme values. Here’s a quick recap:

hist(mtcars$mpg)

Histogram of mtcars$mpg

mtcars$mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
12

142 CHAPTER 17. PLOTTING

17.2.6 Density Plot

We also used the following example in the outliers chapter to create a density
plot:

plot(density(mtcars$mpg))

10 20 30 40

0.
00

0.
03

0.
06

density.default(x = mtcars$mpg)

N = 32 Bandwidth = 2.477

D
en

si
ty

We can take this one step further by adding a title and a shape to the plot.

mpg <- density(mtcars$mpg)
plot(mpg, main="MPG Distribution")
polygon(mpg, col="lightblue", border="black")

17.2. PLOTS AVAILABLE IN BASE R 143

10 20 30 40

0.
00

0.
03

0.
06

MPG Distribution

N = 32 Bandwidth = 2.477

D
en

si
ty

17.2.7 Dot Chart

salesperson <- c("Susan", "Taylor", "Steven"
, "Michael", "Reagan", "Michael"
, "Alaka", "Trevor", "Isaac"
, "Jordan", "Aaron", "Miles")

product <- c("Professional Services", "Professional Services"
, "Professional Services", "Professional Services"
, "Software", "Software", "Software", "Software"
, "Hardware", "Hardware", "Hardware", "Hardware")

sales <- c(10, 7, 13, 18, 12, 19, 14, 16, 21, 9, 17, 19)
df <- data.frame(salesperson = salesperson, product = product, sales = sales)

dotchart(df$sales)

144 CHAPTER 17. PLOTTING

8 10 12 14 16 18 20

dotchart(df$sales, labels = df$salesperson)

Susan
Taylor
Steven
Michael
Reagan
Michael
Alaka
Trevor
Isaac
Jordan
Aaron
Miles

8 10 12 14 16 18 20

groups <- as.factor(df$product)
dotchart(df$sales, labels = df$salesperson, groups = groups)

17.2. PLOTS AVAILABLE IN BASE R 145

ReaganMichaelAlakaTrevor

SusanTaylorStevenMichael

IsaacJordanAaronMilesHardware

Professional Services

Software

8 10 12 14 16 18 20

group_colors <- c("blue", "darkred", "darkgreen")
dotchart(df$sales

, labels = df$salesperson
, groups = groups
, gcolor = group_colors)

ReaganMichaelAlakaTrevor

SusanTaylorStevenMichael

IsaacJordanAaronMilesHardware

Professional Services

Software

8 10 12 14 16 18 20

146 CHAPTER 17. PLOTTING

dotchart(df$sales
, labels = df$salesperson
, groups = groups
, gcolor = group_colors
, color = group_colors[groups]
, pch = 16)

ReaganMichaelAlakaTrevor

SusanTaylorStevenMichael

IsaacJordanAaronMilesHardware

Professional Services

Software

8 10 12 14 16 18 20

17.3 Resources
• ggplot2 documentation: https://ggplot2.tidyverse.org/
• ggplot2 cheat sheet: https://github.com/rstudio/cheatsheets/blob/main/

data-visualization.pdf
• ggplot2 extension gallery: https://exts.ggplot2.tidyverse.org/gallery/
• R colors: http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

https://ggplot2.tidyverse.org/
https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf
https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf
https://exts.ggplot2.tidyverse.org/gallery/
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

Exercises

Questions

Exercise: 15-A
Use the “summary” function to get summary statistics for all columns in
the “mtcars” dataset.
Your final output should resemble the following:

mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
Median :3.695 Median :3.325 Median :17.71 Median :0.0000
Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000

147

148 Exercises

Exercise: 16-A
Use the “lm” function to create a linear model using the “ChickWeight”
dataset. Your model should predict the “weight” variable using the “Diet”
and “Time” variables.
Name your linear model “lm” and then view a summary of your model
using the “summary” function. The output of your summary should look
like this:

Call:
lm(formula = weight ~ Diet + Time, data = ChickWeight)

Residuals:
Min 1Q Median 3Q Max
-136.851 -17.151 -2.595 15.033 141.816

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.9244 3.3607 3.251 0.00122 **
Diet2 16.1661 4.0858 3.957 8.56e-05 ***
Diet3 36.4994 4.0858 8.933 < 2e-16 ***
Diet4 30.2335 4.1075 7.361 6.39e-13 ***
Time 8.7505 0.2218 39.451 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 35.99 on 573 degrees of freedom
Multiple R-squared: 0.7453, Adjusted R-squared: 0.7435
F-statistic: 419.2 on 4 and 573 DF, p-value: < 2.2e-16

Exercise: 17-A
Create a density plot using the “Nile” dataset.

Answers

Answer: 15-A
Here’s how you can accomplish this task:

summary(mtcars)

Answers 149

mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0

drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
Median :3.695 Median :3.325 Median :17.71 Median :0.0000
Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000

am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000

Answer: 16-A
You can create your model with the following code:

lm <- lm(weight ~ Diet + Time, data = ChickWeight)
summary(lm)

Call:
lm(formula = weight ~ Diet + Time, data = ChickWeight)

Residuals:
Min 1Q Median 3Q Max

-136.851 -17.151 -2.595 15.033 141.816

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.9244 3.3607 3.251 0.00122 **
Diet2 16.1661 4.0858 3.957 8.56e-05 ***
Diet3 36.4994 4.0858 8.933 < 2e-16 ***
Diet4 30.2335 4.1075 7.361 6.39e-13 ***
Time 8.7505 0.2218 39.451 < 2e-16 ***

150 Exercises

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 35.99 on 573 degrees of freedom
Multiple R-squared: 0.7453, Adjusted R-squared: 0.7435
F-statistic: 419.2 on 4 and 573 DF, p-value: < 2.2e-16

Answer: 17-A
You can create your density plot with the following code:

plot(density(Nile))

400 600 800 1000 1200 1400 1600

0.
00

00
0.

00
15

density.default(x = Nile)

N = 100 Bandwidth = 60.63

D
en

si
ty

Part VI

Part V: Reporting

151

153

“It feels like we’re all suffering from information overload or data glut.
And the good news is there might be an easy solution to that, and
that’s using our eyes more. So, visualizing information, so that we
can see the patterns and connections that matter and then designing
that information so it makes more sense, or it tells a story, or allows
us to focus only on the information that’s important. Failing that,
visualized information can just look really cool.” -David McCandless
(McCandless 2010)

Finally, it’s important to report on your data to make it easy for others to
extract and understand the information that is most relevant.

• Spreadsheets- Spreadsheets are a common way to communicate informa-
tion to stakeholders. This chapter will go over how to export .xlsx and .csv
files from R, how to format those spreadsheets, and how to add formulas
to them.

• R Markdown- R Markdown allows you to create documents in a pro-
grammatic fashion that improves reproducibility. This chapter will cover
some of the different formats that are available in R as well as how to
create them.

• R Shiny- R Shiny is a tool used to develop web applications and is com-
monly deployed in the use of creating dashboards, hosting static reports,
and custom tooling.

154

Chapter 18

Spreadsheets

Spreadsheets are a common way to communicate information to stakeholders.
This chapter will go over how to export .xlsx and .csv files from R, how to
format those spreadsheets, and how to add formulas to them.

18.1 Export
18.1.1 Export .csv Files
In order to export a dataframe to a CSV file, you can use the “write.csv” function.
This function will accept a dataframe followed by the desired output location
of your file. Let’s start by creating a sample dataframe to work with.

people <- c("John", "Jane", NA)
id <- c(12, 27, 23)
df <- data.frame(id = id, person = people)

id person
12 John
27 Jane
23 NA

Now, let’s specify the location we want to store the CSV file at and execute
the “write.csv” function. (We use the file.path() to specify a path to the
example.csv file in a temporary directory that will automatically be erased
when your R session ends.)

155

156 CHAPTER 18. SPREADSHEETS

output <- file.path(tempdir(), "example.csv")
write.csv(df, output)

This will give you a file that looks like the following image.

You’ll notice that the first column contains the row numbers of the dataframe.
This can be remedied by setting “row.names” to “FALSE” as follows.

write.csv(df, output, row.names = FALSE)

This will yield the following result.

18.1. EXPORT 157

Finally, you’ll notice that one of the names is an “NA” value. You can tell
R how to handle these values at the time of exporting your file with the “na”
argument. This argument will replace any “NA” values with the value of your
choice. Let’s try replacing the “NA” value with “Unspecified”.

write.csv(df, output, row.names = FALSE, na = "Unspecified")

This results in the following output:

158 CHAPTER 18. SPREADSHEETS

18.1.2 Export .xlsx Files
Excel files are handled very similarly to CSV files except that you will need to
use the “write_excel” function from the “writexl” package. The following code
snippet demonstrates how to export your data to an Excel file.

library(writexl)
output <- "C:/File Location/example.xlsx"
write_xlsx(df, output)

18.2 Formatting
When saving Excel workbooks, you can also leverage the “openxlsx” library
to format and add formulas to your workbook. Let’s use the iris dataset to
demonstrate these capabilities.

library(openxlsx)

Next, let’s break down the iris dataset into three separate datasets based on
species.

18.2. FORMATTING 159

setosa <- iris[which(iris$"Species" == "setosa"),]
versicolor <- iris[which(iris$"Species" == "versicolor"),]
virginica <- iris[which(iris$"Species" == "virginica"),]

Now, we’ll use the “createWorkbook” function from the “openxlsx” library to
create a blank workbook object.

wb <- createWorkbook()

We’ll now add three worksheets to our workbook. These worksheets will ulti-
mately be tabs in our Excel workbook.

addWorksheet(wb, "Setosa")
addWorksheet(wb, "Versicolor")
addWorksheet(wb, "Virginica")

We can also create styles to apply to our workbook. Let’s create a style for our
headers as well as a style for the body of our data.

heading <- createStyle(fontName = "Segoe UI"
, fontSize = 12
, fontColour = "#FFFFFF"
, bgFill = "#244062"
, textDecoration = "bold")

body <- createStyle(fontName = "Segoe UI", fontSize = 12)

Let’s now apply our three datasets to the workbook object we previously created.

Write the setosa dataset to the "Setosa" worksheet
writeData(wb

, "Setosa"
, setosa
, startCol = 1
, startRow = 1
, rowNames = FALSE)

Write the versicolor dataset to the "Versicolor" worksheet
writeData(wb

, "Versicolor"
, versicolor
, startCol = 1
, startRow = 1
, rowNames = FALSE)

160 CHAPTER 18. SPREADSHEETS

Write the virginica dataset to the "Virginica" worksheet
writeData(wb

, "Virginica"
, virginica
, startCol = 1
, startRow = 1
, rowNames = FALSE)

Now let’s apply our styles to each worksheet.

Apply styles to "Setosa" worksheet
addStyle(wb

, "Setosa"
, cols = 1:length(setosa)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Setosa"
, cols = 1:length(setosa)
, rows = 2:nrow(setosa)
, style = body
, gridExpand = TRUE)

Apply styles to "Versicolor" worksheet
addStyle(wb

, "Versicolor"
, cols = 1:length(versicolor)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Versicolor"
, cols = 1:length(versicolor)
, rows = 2:nrow(versicolor)
, style = body
, gridExpand = TRUE)

Apply styles to "Virginica" worksheet
addStyle(wb

, "Virginica"
, cols = 1:length(virginica)

18.2. FORMATTING 161

, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Virginica"
, cols = 1:length(virginica)
, rows = 2:nrow(virginica)
, style = body
, gridExpand = TRUE)

Finally, we will save our workbook to a file named “iris.xlsx”.

saveWorkbook(wb, "iris.xlsx", overwrite = TRUE)

This will result in a workbook that looks like the following image.

162 CHAPTER 18. SPREADSHEETS

The full script is shown below.

18.2. FORMATTING 163

library(openxlsx)

Create datasets
setosa <- iris[which(iris$"Species" == "setosa"),]
versicolor <- iris[which(iris$"Species" == "versicolor"),]
virginica <- iris[which(iris$"Species" == "virginica"),]

Create workbook object
wb <- createWorkbook()

#Add worksheets
addWorksheet(wb, "Setosa")
addWorksheet(wb, "Versicolor")
addWorksheet(wb, "Virginica")

Create Styles
heading <- createStyle(fontName = "Segoe UI"

, fontSize = 12
, fontColour = "#FFFFFF"
, bgFill = "#244062"
, textDecoration = "bold")

body <- createStyle(fontName = "Segoe UI", fontSize = 12)

Write the setosa dataset to the "Setosa" worksheet
writeData(wb

, "Setosa"
, setosa
, startCol = 1
, startRow = 1
, rowNames = FALSE)

Write the versicolor dataset to the "Versicolor" worksheet
writeData(wb

, "Versicolor"
, versicolor
, startCol = 1
, startRow = 1
, rowNames = FALSE)

Write the virginica dataset to the "Virginica" worksheet
writeData(wb

, "Virginica"
, virginica

164 CHAPTER 18. SPREADSHEETS

, startCol = 1
, startRow = 1
, rowNames = FALSE)

Apply styles to "Setosa" worksheet
addStyle(wb

, "Setosa"
, cols = 1:length(setosa)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Setosa"
, cols = 1:length(setosa)
, rows = 2:nrow(setosa)
, style = body
, gridExpand = TRUE)

Apply styles to "Versicolor" worksheet
addStyle(wb

, "Versicolor"
, cols = 1:length(versicolor)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Versicolor"
, cols = 1:length(versicolor)
, rows = 2:nrow(versicolor)
, style = body
, gridExpand = TRUE)

Apply styles to "Virginica" worksheet
addStyle(wb

, "Virginica"
, cols = 1:length(virginica)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, "Virginica"

18.2. FORMATTING 165

, cols = 1:length(virginica)
, rows = 2:nrow(virginica)
, style = body
, gridExpand = TRUE)

saveWorkbook(wb, "iris.xlsx", overwrite = TRUE)

You may notice that this script is a little longer than it needs to be. Let’s try
to simplify it with a loop.

The following script will accomplish the exact same thing as the first script.

library(openxlsx)

setosa <- iris[which(iris$"Species" == "setosa"),]
versicolor <- iris[which(iris$"Species" == "versicolor"),]
virginica <- iris[which(iris$"Species" == "virginica"),]

wb <- createWorkbook()

heading <- createStyle(fontName = "Segoe UI"
, fontSize = 12
, fontColour = "#FFFFFF"
, bgFill = "#244062"
, textDecoration = "bold")

body <- createStyle(fontName = "Segoe UI", fontSize = 12)

datasets <- list(setosa, virginica, versicolor)
worksheets <- c("Setosa", "Virginica", "Versicolor")

for (i in 1:3) {
df <- as.data.frame(datasets[i])
addWorksheet(wb, worksheets[i])
writeData(wb

, worksheets[i]
, df
, startCol = 1
, startRow = 1
, rowNames = FALSE)

addStyle(wb
, worksheets[i]
, cols = 1:length(df)
, rows = 1
, style = heading

166 CHAPTER 18. SPREADSHEETS

, gridExpand = TRUE)
addStyle(wb

, worksheets[i]
, cols = 1:length(df)
, rows = 2:nrow(df)
, style = body
, gridExpand = TRUE)

}

saveWorkbook(wb, "iris.xlsx", overwrite = TRUE)

18.3 Formulas
If we wanted to add another column to each of our worksheets that used an
Excel formula to determine the ratio between the sepal length and the sepal
width, we could use the “writeFormula” function to accomplish that.

The following example uses a loop that creates a formula for each row which
divides the respective value in column A by the the respective value in column
B. Next we add the heading style to the first row in column six and add a
header named “Sepal.Ratio”. Finally, we write the formula vector to column six
beginning on row 2.

library(openxlsx)

setosa <- iris[which(iris$"Species" == "setosa"),]
versicolor <- iris[which(iris$"Species" == "versicolor"),]
virginica <- iris[which(iris$"Species" == "virginica"),]

wb <- createWorkbook()

heading <- createStyle(fontName = "Segoe UI"
, fontSize = 12
, fontColour = "#FFFFFF"
, bgFill = "#244062"
, textDecoration = "bold")

body <- createStyle(fontName = "Segoe UI", fontSize = 12)

datasets <- list(setosa, virginica, versicolor)
worksheets <- c("Setosa", "Virginica", "Versicolor")

for (i in 1:3) {
df <- as.data.frame(datasets[i])

18.3. FORMULAS 167

addWorksheet(wb, worksheets[i])
writeData(wb

, worksheets[i]
, df
, startCol = 1
, startRow = 1
, rowNames = FALSE)

addStyle(wb
, worksheets[i]
, cols = 1:length(df)
, rows = 1
, style = heading
, gridExpand = TRUE)

addStyle(wb
, worksheets[i]
, cols = 1:length(df)
, rows = 2:nrow(df)
, style = body
, gridExpand = TRUE)

formula <- c()

for (x in 2:(nrow(df) + 1)) {
formula <- append(formula, paste("A", x, "/B", x, sep = ''))

}

addStyle(wb
, worksheets[i]
, cols = 6
, rows = 1
, style = heading
, gridExpand = TRUE)

writeData(wb
, worksheets[i]
, "Sepal.Ratio"
, startCol = 6
, startRow = 1
, rowNames = FALSE)

writeFormula(wb
, worksheets[i]
, formula
, startCol = 6
, startRow = 2)

168 CHAPTER 18. SPREADSHEETS

}

saveWorkbook(wb, "iris.xlsx", overwrite = TRUE)

This gives us an Excel workbook that looks like the following image.

18.4. RESOURCES 169

18.4 Resources
• openxlsx documentation: https://cran.r-project.org/web/packages/

openxlsx/openxlsx.pdf

https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf
https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf

170 CHAPTER 18. SPREADSHEETS

Chapter 19

R Markdown

R Markdown allows you to create documents in a programmatic fashion that
lends itself towards reproducibility. This chapter will cover the different formats
that are available in R as well as how to create them.

19.1 Format Options

We’ll begin by creating a new document by selecting the “New File” button
towards the top left corner of R Studio and choosing “R Markdown” from the
dropdown menu.

171

172 CHAPTER 19. R MARKDOWN

19.1. FORMAT OPTIONS 173

This will display a menu that looks like the following image.

You’ll notice that you have four main options on the left-hand side: “Document”,
“Presentation”, “Shiny”, and “From Template”.

174 CHAPTER 19. R MARKDOWN

Each of these options will have several sub-options. The “Document” option,
for example is selected by default and you can see there are three sub-options
on the right-hand side: “HTML”, “PDF”, and “Word”.

19.1. FORMAT OPTIONS 175

The “Presentation” option allows you to create slide-based presentations in ei-
ther HTML, PDF, or PowerPoint format.

176 CHAPTER 19. R MARKDOWN

The “Shiny” option allows you to create either presentations or documents which
include interactive Shiny components.

19.1. FORMAT OPTIONS 177

Finally, the “From Template” option will display several options for you to
leverage pre-made templates.

178 CHAPTER 19. R MARKDOWN

19.2 HTML Document Example

Let’s choose the HTML sub-option from the Document option and select “OK”.

19.2. HTML DOCUMENT EXAMPLE 179

This will result in a new file in your source pane that looks similar to the
following image.

180 CHAPTER 19. R MARKDOWN

You can either continue to edit your document with markdown code or you can
select the “visual” option towards the top-left corner of the source pane to have
more of a traditional text editor experience.

19.2. HTML DOCUMENT EXAMPLE 181

Finally, we can render our document by selecting the “knit” button.

182 CHAPTER 19. R MARKDOWN

Selecting this will prompt you to save your file. After you do so, your rendered
document will appear in your viewer tab.

19.3. R NOTEBOOK 183

In addition to the preview being displayed in your viewer tab, you should now
also have an HTML file located in the same place as you saved your R Markdown
file. You can select this file to preview it in your browser as well as send it to
others for them to preview.

19.3 R Notebook

Another subset of R Markdown is R Notebooks. There is a lot of crossover be-
tween regular R Markdown documents and R Notebooks; however, R notebooks
will generally be used for more technical audiences such as other R users or even
just to organize your own thought processes while coding.

Let’s try creating a notebook by selecting the “New File” button towards the
top left corner of R Studio and choosing “R Notebook” from the dropdown
menu.

184 CHAPTER 19. R MARKDOWN

19.3. R NOTEBOOK 185

This will generate a new file in your source pane that looks like the following
image.

You’ll notice that there is no “knit” option like there is in an ordinary R Mark-
down file. This is because this file is meant to be shared in its current format
rather than as a rendered document. The “knit” option is replaced by a “pre-
view” option. Selecting this option will result in the following output.

186 CHAPTER 19. R MARKDOWN

This generates a preview of your file in the viewer tab. You may also notice
that the output of the plot(cars) code has not been rendered in the preview.
This is because code has to be explicitly run in R Notebooks in order for it to
be displayed in the rendered preview.

Let’s run the code by pressing the green play button inside the code chunk.

Now if you preview the notebook again you’ll see the plot output included.

19.4. RESOURCES 187

19.4 Resources
• “Document Templates” from “R Markdown: The Definitive Guide”:

https://bookdown.org/yihui/rmarkdown/document-templates.html?
version=2022.07.2%2B576&mode=desktop

• R Markdown Formats: https://rmarkdown.rstudio.com/formats.html
• R Markdown Home Page: https://rmarkdown.rstudio.com/
• R Markdown Notebooks: https://rmarkdown.rstudio.com/lesson-10.html

https://bookdown.org/yihui/rmarkdown/document-templates.html?version=2022.07.2%2B576&mode=desktop
https://bookdown.org/yihui/rmarkdown/document-templates.html?version=2022.07.2%2B576&mode=desktop
https://rmarkdown.rstudio.com/formats.html
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/lesson-10.html

188 CHAPTER 19. R MARKDOWN

Chapter 20

R Shiny

R Shiny is a tool used to develop web applications and is commonly deployed
in the use of creating dashboards, hosting static reports, and custom tooling.

20.1 Quickstart
Let’s create a new project containing a shiny application. Projects allow you to
bundle multiple files into a a single workspace. You can create a new project
via the “Create a new project” button towards the top left corner in RStudio.

189

190 CHAPTER 20. R SHINY

Since we are starting this project from scratch, let’s choose the “New Directory”
option.

Now you can see there are many types of projects that you can create (not just
Shiny Applications). However, we are going to choose “Shiny Application” for
this example.

20.1. QUICKSTART 191

This is going to create a new folder containing your project files. Choose what
you would like to name that folder and where you would like for it to be saved.

192 CHAPTER 20. R SHINY

If you’re working in RStudio, you should now have a sample application in your
source pane. We’ll go more in depth into what all of this means later.

20.1. QUICKSTART 193

For now, let’s demo what this app looks like by pressing the “Run App” button
towards the top right corner of your source pane. You should see a screen pop
up that looks like this.

194 CHAPTER 20. R SHINY

We can see that the application is using the faithful dataset to create a histogram
which accepts user input to dynamically adjust the number of bins presented in
the histogram.

20.2 Basic Components of a Shiny Application
Shiny applications consist of two main components: a server function and a UI
object. The server function will handle any logic you need to put into your
application while the UI object will create a user interface. Additionally, you
will need to include the “shiny” library and any other libraries that you use
in your code. Let’s break down everything that is happening in this sample
application

20.2.1 Libraries
One library you will always need to include in your shiny applications is the
“shiny” library. Make sure you include any other libraries you plan on using in
your code.

library(shiny)

20.2.2 UI
The next thing we see in our code is the creation of our UI object. This is where
the application layout is created. The first function is the “fluidPage” function.

20.2. BASIC COMPONENTS OF A SHINY APPLICATION 195

This is probably one of the most common ways to create user interfaces in shiny
applications. Layouts created with the fluid page methodology are organized
into rows and columns and scale to fit varying browser sizes.

The “titlePanel” function creates a panel with your title inside of it. In our case,
this function is responsible for “Old Faithful Geyser Data” being displayed at
the top of the page.

Next, we see the “sidebarLayout” function. This is essentially a pre-constructed
layout which consists of a “sidebar” panel and a “main” panel which are created
using the “sidebarPanel” and “mainPanel” functions, respectively. You’ll notice
that our sidebar is actually located above our main panel rather than to the
side. This is just because the size of our browser was small enough that they
collapsed to be stacked on top of each other. If you increase the size of your
browser, you will see the sidebar return to it’s original location.

Inside of the “sidebarPanel” function, we have a function called “sliderInput”.
The “sliderInput” function creates the component which allows the user to select
the number of bins in our app. We can see this function gives the component the
name “bins”, the title “Number of Bins”, a minimum input of “1”, a maximum
value of “50”, and a default value of “30”.

The last component of our UI object is the “mainPanel” function. This main
panel designates the section where our output plot will ultimately go as can be
observed by the “plotOutput” function nested inside of it. This “plotOutput”
function is given the name “distPlot”. This is done so that it can be referenced
later in our server function.

ui <- fluidPage(

Application title
titlePanel("Old Faithful Geyser Data"),

Sidebar with a slider input for number of bins
sidebarLayout(

sidebarPanel(
sliderInput("bins",

"Number of bins:",
min = 1,
max = 50,
value = 30)

),

Show a plot of the generated distribution
mainPanel(

plotOutput("distPlot")
)

196 CHAPTER 20. R SHINY

)
)

20.2.3 Server
After we create the UI object, we’ll need to create our server function. We’ll pass
two arguments into the function: “input” and “output”. The input argument
allows us to access data from the user interface while the output argument allows
us to pass data back to the user interface.

Inside the function, we reference the “distPlot” component of the UI by typing
“output$distPlot”. After this, we pass a plot to the UI with the “renderPlot”
function.

Note

The UI can only accept the plot we are going to send it because it is using
the “plotOutput” function. If you were going to send a different form of
data, the UI would need to have the corresponding function in order to
accept it.
For example, if your server was going to send a table to the UI your server
would need to use the “renderTable” function and your UI would need to
use the “tableOutput” function.

server <- function(input, output) {

output$distPlot <- renderPlot({
generate bins based on input$bins from ui.R
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)

draw the histogram with the specified number of bins
hist(x, breaks = bins, col = 'darkgray', border = 'white',

xlab = 'Waiting time to next eruption (in mins)',
main = 'Histogram of waiting times')

})
}

20.2.4 Putting it Together
Finally, you will combine your server and your UI and actually run your app
with the “shinyApp” function.

20.3. DEPLOYING APPLICATION 197

shinyApp(ui = ui, server = server)

20.3 Deploying Application

Now that you’ve built an application, you can actually deploy it for the whole
world to see. There are many ways to do this; however, probably the easiest
way to get started is to create a free account with ShinyApps.io.

20.3.1 ShinyApps.io

Navigate to https://www.shinyapps.io/, select the “Sign Up” button and follow
the steps to create a free account.

Once you create your account and see your dashboard, you can navigate to your
“tokens” by selecting your name in the top right corner and choosing “tokens”
from the dropdown menu.

https://www.shinyapps.io/

198 CHAPTER 20. R SHINY

Choose the green “Add Token” button to create a new token.

Now that your token has been generated, select the blue “Show” button to view
it.

You should now have a window that resembles the following image. Select the
“Show secret” button and then copy the code to your clipboard for use later.

20.3. DEPLOYING APPLICATION 199

20.3.2 Configuring Account

The next thing we’ll need to do is to link RStudio to your ShinyApps.io account.
You can do this by navigating back to RStudio and choosing the dropdown
menu next to the publish button. From here, select the “Manage Accounts”
option.

You’ll then get a window the resembles the following image. Choose the “Con-
nect” button to continue.

200 CHAPTER 20. R SHINY

Next, you’ll see the following options. Choose “ShinyApps.io” to continue.

20.3. DEPLOYING APPLICATION 201

Now you’ll have the oppportunity to paste your token from you ShinyApps.io
account. After you do so, press the “Connect Account” button.

202 CHAPTER 20. R SHINY

Now that RStudio is linked to your ShinyApps.io account, you can press the
publish button. You’ll then get a window which allows you to name your app
before publishing. Once you are satisfied with the name you choose, select
“Publish”.

20.4. RESOURCES 203

After a few moments, your browser should launch displaying your newly created
Shiny App!

20.4 Resources
• Shiny Home Page: https://shiny.rstudio.com/
• Shiny UI Editor: https://rstudio.github.io/shinyuieditor/

https://shiny.rstudio.com/
https://rstudio.github.io/shinyuieditor/

204 CHAPTER 20. R SHINY

Exercises

Questions

Exercise: 18-A
Write the first seven rows of the “faithful” dataset to a csv file named
“faithful.csv”. Make sure you do not include any row names in your output
file.

Exercise: 18-B
Write the entire “faithful” dataset to an xlsx file using the “saveWorkbook”
function. Name the tab (worksheet) that the data is on “data” and make
the text in the header row bold.

Answers

Answer: 18-A
You can accomplish this through the use of the “write.csv” function.

write.csv(head(faithful, 7), "faithful.csv", row.names = FALSE)

Answer: 18-B
The following code will allow you to accomplish this task.

205

206 Exercises

library(openxlsx)
wb <- createWorkbook()
heading <- createStyle(textDecoration = "bold")
addWorksheet(wb, "data")
writeData(wb

, "data"
, faithful
, startCol = 1
, startRow = 1
, rowNames = FALSE)

addStyle(wb
, "data"
, cols = 1:length(faithful)
, rows = 1
, style = heading
, gridExpand = TRUE)

saveWorkbook(wb, "faithful.xlsx", overwrite = TRUE)

References

Chambers, Cleveland, J. M., and P. A. Tukey. 1983. Graphical Methods for
Data Analysis. Wadsworth & Brooks/Cole.

Eremenko, Kirill. 2020. “Hadley Wickham Talks Integration and Fu-
ture of r and Python [Audio Podcast].” SuperDataScience. https:
//www.superdatascience.com/podcast/hadley-wickham-talks-integration-
and-future-of-python-and-r.

Garvin, David A. 1993. “Building a Learning Organization.” Harvard Business
Review July-August 1993.

Hermans, Felienne. 2021. “Hadley Wickham on r and Tidyverse [Audio Pod-
cast].” Software Engineering Radio. https://www.se-radio.net/2021/03/
episode-450-hadley-wickham-on-r-and-tidyverse/.

Hofmann, J. R. 1996. Enlightenment and Electrodynamics. Cambridge Univer-
sity Press.

Ihaka, Ross. 1998. “R : Past and Future History.” https://www.stat.auckland.
ac.nz/~ihaka/downloads/Interface98.pdf.

McCandless, David. 2010. “The Beauty of Data Visualization.” https://www.
ted.com/talks/david_mccandless_the_beauty_of_data_visualization/
transcript?language=en.

Paulson, Josh. 2022. Navigating Code in the RStudio IDE. https:
//support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-
in-the-RStudio-IDE.

207

https://www.superdatascience.com/podcast/hadley-wickham-talks-integration-and-future-of-python-and-r
https://www.superdatascience.com/podcast/hadley-wickham-talks-integration-and-future-of-python-and-r
https://www.superdatascience.com/podcast/hadley-wickham-talks-integration-and-future-of-python-and-r
https://www.se-radio.net/2021/03/episode-450-hadley-wickham-on-r-and-tidyverse/
https://www.se-radio.net/2021/03/episode-450-hadley-wickham-on-r-and-tidyverse/
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.stat.auckland.ac.nz/~ihaka/downloads/Interface98.pdf
https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization/transcript?language=en
https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization/transcript?language=en
https://www.ted.com/talks/david_mccandless_the_beauty_of_data_visualization/transcript?language=en
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-in-the-RStudio-IDE
https://support.rstudio.com/hc/en-us/articles/200710523-Navigating-Code-in-the-RStudio-IDE

208 References

	I Introduction
	Prerequisites
	Structure of the Book
	License
	About Me
	What is R?
	History
	Resources

	What is Data Analysis?
	The Process of Data Analysis
	Resources

	Setup
	Install R
	Install R Studio
	Alternatives
	Posit Cloud
	Replit
	Kaggle

	Resources

	II Part I: Fundamentals
	Getting Familiar with RStudio
	Customization
	Source Pane
	Console
	Environment
	Files
	Resources

	Programming Basics
	Executing Code
	Console
	Script

	Comments
	Variables
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Assignment Operators
	Miscellaneous Operators

	Functions
	Loops
	While Loops
	For Loops

	Conditionals
	R packages
	Resources

	Data Types
	Numeric
	Double
	Integer

	Complex
	Character
	Logical
	Raw
	Resources

	Data Structure
	Vectors
	Lists
	Matrices
	Factors
	Data Frames
	Arrays
	Resources

	Exercises
	Questions
	Answers

	III Part II: Data Acquisition
	Included Datasets
	View Catalog
	Working with Included Data
	Common Datasets
	mtcars
	faithful
	ChickWeight
	Titanic

	Resources

	Import from Spreadsheets
	Import from .csv Files
	Import from .xlsx Files
	Import and Combine Multiple Files
	Resources

	Working with APIs
	Install Packages
	Load packages from the library
	Make Request
	Parse & Explore Data
	Adding Parameters to Requests
	Adding Headers to Requests
	Resources
	Helpful APIs

	Exercises
	Questions
	Answers

	IV Part III: Data Preparation
	Data Cleaning
	Renaming Variables
	Splitting Text
	Replace Values
	Drop Columns
	Drop Rows
	Resources

	Handling Missing Data
	Handling NA/Blank Values
	Constant Value Imputation
	Central Tendency Imputation
	Multiple Imputation
	Resources

	Outliers
	Finding Outliers Visually
	Scatter Plot
	Box Plot
	Histogram
	Density Plot

	Finding Outliers Statistically
	Standard Deviation

	Removing Outliers
	Resources

	Organizing Data
	Sort, Order, and Rank
	Filtering
	Grouping
	Resources

	Exercises
	Questions
	Answers

	V Part IV: Developing Insights
	Summary Statistics
	Quantitative Data
	Qualitative Data
	Resources

	Regression
	Linear Regression
	Multiple Regression
	Logistic Regression
	Resources

	Plotting
	Plotting your Regression Model
	Plots Available in Base R
	Box Plot
	Plot Matrix
	Pie Chart
	Bar Plot
	Histogram
	Density Plot
	Dot Chart

	Resources

	Exercises
	Questions
	Answers

	VI Part V: Reporting
	Spreadsheets
	Export
	Export .csv Files
	Export .xlsx Files

	Formatting
	Formulas
	Resources

	R Markdown
	Format Options
	HTML Document Example
	R Notebook
	Resources

	R Shiny
	Quickstart
	Basic Components of a Shiny Application
	Libraries
	UI
	Server
	Putting it Together

	Deploying Application
	ShinyApps.io
	Configuring Account

	Resources

	Exercises
	Questions
	Answers

	References

